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Lecture 19

Hardness of Approximation



Recap

Recap: optimization

e many decision problems we have seen have optimization
versions
e both minimization and maximization

¢ algorithms return best solution with respect to optimization
parameter p

Examples

problem | min/max | parameter

3SAT max fraction of satisfiable clauses
Indset max size of independent set

VC min size of cover




Recap

Recap: approximation results

e vertex cover has a 2-approximation
e possibly NP-hard to approximate to within 2 — e forall e > 0
« currently known: NP-hard to approximate to within 10 5 — 21;
e |. Dinur, S. Safra, The importance of being biased, STOC 2002.
e set cover has a In n approximation
o this is optimal; it is NP-hard to approximate to within (1 —€)Inn
e U. Feige, A threshold of In n for approximating set cover, STOC
1996.

e TSP also hard to approximate to within any 1 + ¢



Recap

Polynomial time approximation schemes

A problem has a polynomial time approximation scheme if for all
€ > 0 it can be efficiently approximated to within a factor of 1 — ¢ for
maximization and 1 + € for minimization.

Examples
e knapsack
¢ bin packing
e subset sum
e a number of other scheduling problems

Which NP-complete problems do have PTAS? Which don’t? How to
prove results on previous slide?



Recap

Recap: gap — TSPJ[|V/|, h|V||

An algorithm to solve the gap problem needs to:

¢ if G has a shortest tour of length < |V| then G is accepted by
the gap algorithm

o if the shortest tour of G is > h|V| then G is rejected
e otherwise: don’t care

Theorem: For any h > 1 gap — TSP[|V/|, h|V|] is NP-hard by
reduction from Hamiltonian cycle

= It is NP-hard to approximate TSP to within any factor h > 1.

The reduction is called gap-producing.



Recap

Agenda

gap — 3SAT[p, 1]
7/8 approximation for max3SAT

PCP theorem: hardness of approximation view

gap-preserving reductions

hardness of approximating Indset and VC



gap-3SAT

gap-3SAT|p, 1]

gap — 3SAT|p, 1] is the gap version of max3SAT which
computes the largest fraction of satisfiable clauses

a 3CNF with m clauses is accepted if it is satisfiable
it is rejected if < p - m clauses are satisfiable

until 1992 it was an open problem whether max3SAT could be
approximated to within any factor > 7/8

why 7/87



gap-3SAT

A 7/8 approximation of max3SAT

Theorem
For all 3CNF with exactly three independent literals per clause,
there exists an assignment that satisfies > 7/8 of the clauses.

Proof

o for a random assignment let Y; be the random variable that is
true if clause C; is true under the assignment

e then N =¥ Y;is the number of satisfied clauses

e E[Y]]=7/8foralli

= E[N]=7/8-m

¢ by the law of average (probabilistic method basic principle)
there must exist an assignment that makes 7/8 of the clauses
true

Can we do any better than 7/8?



PCP: hardness of approximation

No!

Theorem
For every € > 0 gap — 3SAT[7/8 + €, 1] is NP-hard.

e this is a PCP theorem by J. Hastad, Some optimal
inapproximability results, STOC 1997.

e as a consequence, if there exists a 7/8 + € approximation of
max3SAT then P = NP

o we will later prove a much weaker PCP theorem
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PCP: hardness of approximation

Agenda

gap — 3SAT[p,1] vV
7/8 approximation for max3SAT v/

PCP theorem: hardness of approximation view

gap-preserving reductions

hardness of approximating Indset and VC



PCP: hardness of approximation

THE PCP theorem

Hastads result is one in a series of inapproximability results based
on the PCP theorem.

Theorem (PCP: hardness of approximation)
There exists a p < 1 such that gap — 3SAT|[p, 1] is NP-hard.

o Safra: One of the deepest and most complicated proofs in
computer science with a matching impact.
e original proof in two papers:
e Arora, Safra, Probabilistic checking of proofs, FOCS 92
e Arora, Lund, Motwani, Sudan, Szegedy, Proof verification and
the hardness of approximations, FOCS 92.
e virtually all inapproximability results depend on the PCP
theorem and the notion of gap preserving reductions by
Papadimitriou and Yannakakis
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PCP: hardness of approximation

Probabilistically checkable proofs

the PCP theorem is equivalent to the statement
NP = PCPJ[log n, 1]

PCP stands for probabilistically checkable proofs and is related
to interactive proofs and MIP = NEXP

equivalence of two views shown in next lecture
NP = PCP[poly(n), 1] shown after that

13



PCP: hardness of approximation

Agenda

gap — 3SAT[p,1] vV
7/8 approximation for max3SAT v/

PCP theorem: hardness of approximation view v/

gap-preserving reductions

hardness of approximating Indset and VC



PCP Application

Gap-producing and preserving reductions

PCP theorem states that for every L € NP there exists a
gap-producing reduction f to gap — 3SAT|p, 1]:
e xe L = f(x) is satisfiable

e x ¢ L = less than p of the f(x)’s clauses can be satisfied at
the same time

Observation

¢ in order to show inapproximability of other problems, we want
to preserve gaps by reductions
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PCP Application

gap — 3SAT|p, 1] <gap 9ap — IS[p, 1]

Consider the proof of 3SAT <, Indset.

The reduction f used there is actually gap-preserving, we write

gap — SSATU) 1] <gap 9P — |SU7, 1]

o if 3CNF ¢ with m clauses is satisfiable then graph f(y) has an
independent set of size m

o if less than p of y’s clauses can be satisfied, the largest
independent set has less than p - m nodes

e hence: if we can approximate Indest to within p, then we can
approximate max3SAT to within p, then we can decide any
L € NP
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PCP Application

What about vertex cover?

The same reduction f from independent set can be used to show
hardness of approximating vertex cover to within (7 — p)/6 for the
same p used in max3SAT and Indset.

o s satisfiable
= f(y) hasi.s. of size m
= f(y) has a v.c. of size 6m

e only p - m of y’s clauses satisfiable
= f(y) has largest i.s. smaller than pm
= f(y) has smallest v.c. of size larger than (7 — p)m



PCP Application

Independent set vs. vertex cover

e For both independent set and vertex cover, we know that there
exist a p < 1 such that neither can be approximated to within p
(resp. 1/p)

e optimal solutions are intimately related: if vc is the smallest
vertex cover and is the largest independent set then ve = is—n

e but: approximation is different; using the p app. for independent
set, yields a £ approximation for set cover

o for independent set we can show NP-hardness of
approximation to within any factor p < 1 by gap amplification
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PCP Application

Gap amplification

given instance G = (V. E)
construct G’ = (V x V, E") where

E' = {(uv),(W,V)]|(uu)eEV(v,V)eE)

if IC Visani.s. of Gthen [x lisani.s. of G’; hence

opt(G’) > opt(G)?

if I'is an optimal i.s. in G’ with vertices (u1, v4), ..., (uj, v;) then
the u; and the v; are each i.s. in G with at most opt(G) vertices;
hence opt(G’) < opt(G)?

hence i.s. is also hard to approximate within p?

this can be done any constant k times to obtain the result
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PCP Application

What have we learnt?

e 7/8 approximation for max3SAT
e PCP theorem: hardness of approximating max3SAT

e gap-preserving reductions to obtain more inapproximability
results

e NP-hardness of approximating Indset to within any p < 1

o NP-hardness of approximating VC to within some p > 1 (yet
unknown)

e but: many NP-complete problems can still be approximated to
within any factor 1 + €

Up next
e PCP: hardness of approximation vs. prob. checkable proofs
o proof of a weaker PCP theorem
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