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Lecture 17

IP = PSPACE (2)
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Intro

Goal and Plan

Goal
• IP = PSPACE

Plan
1. PSPACE ⊆ IP by showing QBF ∈ IP X

2. IP ⊆ PSPACE by computing optimal prover strategies in
polynomial space
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Intro

Agenda

• optimal prover strategy to show IP ⊆ PSPACE
• summary and further reading

• outlook: approximation and PCP theorem
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PSPACE contains IP

Definition recap

L is in IP iff

1. there exists a polynomial p and

2. there exists a poly-time, randomized verifier V

such that for all words x ∈ {0, 1}∗ holds

• if x ∈ L then there exists a prover P such that
Pr[outV 〈P,V〉(x) = 1] ≥ 2/3

• if x < L then for all provers P holds that
Pr[outV 〈P,V〉(x) = 1] ≤ 1/3

Moreover, the following is bounded by p(|x |)

• the number of random bits chosen by V

• the number of rounds

• the length of each message

5



PSPACE contains IP

Definition recap

L is in IP iff

1. there exists a polynomial p and

2. there exists a poly-time, randomized verifier V

such that for all words x ∈ {0, 1}∗ holds

• if x ∈ L then there exists a prover P such that
Pr[outV 〈P,V〉(x) = 1] ≥ 2/3

• if x < L then for all provers P holds that
Pr[outV 〈P,V〉(x) = 1] ≤ 1/3

Moreover, the following is bounded by p(|x |)

• the number of random bits chosen by V

• the number of rounds

• the length of each message

5



PSPACE contains IP

Definition recap

L is in IP iff

1. there exists a polynomial p and

2. there exists a poly-time, randomized verifier V

such that for all words x ∈ {0, 1}∗ holds

• if x ∈ L then there exists a prover P such that
Pr[outV 〈P,V〉(x) = 1] ≥ 2/3

• if x < L then for all provers P holds that
Pr[outV 〈P,V〉(x) = 1] ≤ 1/3

Moreover, the following is bounded by p(|x |)

• the number of random bits chosen by V

• the number of rounds

• the length of each message

5



PSPACE contains IP

Optimal Prover

Let L ∈ IP be arbitrary, we need to show that L ∈ PSPACE.

We know that there exist V and p according to definition on previous
slide.

For x ∈ {0, 1}n, we need to compute in polynomial space whether
x ∈ L or x < L .

z := max
P
{Pr[outV 〈P,V〉(x) = 1] | P is any prover for L}

z is error probability of optimal prover.

• if z ≤ 1/3 then x < L

• if z ≥ 2/3 then x ∈ L

• since L ∈ IP other z cannot occur

• maximum taken over finitely many provers for a given x
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PSPACE contains IP

Recursive computation of z

If we can compute z in polynomial space, we are done.

Recursive algorithm:
• simulate V branching on

• each random choice of V
• each possible response of P

• count
• accepting branches produced by P’s optimal response
• total number of branches

• ratio is z
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PSPACE contains IP

Doable in polynomial space?

• recursion depth: p(n)

• total number of branches: p(n)p(n)

⇒ requires polynomially many bits only

• can manage both counters and current branch with a PSPACE
machine
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PSPACE contains IP

Agenda

• optimal prover strategy to show IP ⊆ PSPACE X
• summary and further reading

• outlook: approximation and PCP theorem
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Summary

Summary

• IP = PSPACE
• PSPACE has short interactive proofs (certificates)
• proof of IP ⊇ PSPACE also showed that we can have

• public coins
• perfect completeness

for each L ∈ IP
• interaction plus randomization seem to add power, whereas

each in isolation seemingly does not
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Summary

Further Reading

• interactive proofs defined in 1985 by Goldwasser, Micali,
Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing archive. Volume 18
(1)(1989).

• public coins: L. Babai Trading group theory for randomness.
STOC 1985.

• survey book: Oded
Goldreich Computational Complexity. A Conceptual Perspective.
http://www.wisdom.weizmann.ac.il/˜oded/cc-drafts.html
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Summary

Further Reading

• Adi Shamir. IP=PSPACE. Journal of the ACM v.39 n.4,
p.878-880.

• outline here followed lecture notes from Brown university: A
detailed proof that IP=PSPACE.
http://www.cs.brown.edu/courses/gs019/papers/ip.pdf

• also nice: Michael Sipser’s book Introduction to the Theory of
Computation

• essentially covered 8.1 and 8.2 from Arora-Barak book

• an entertaining survey about the development in the beginning
of the 90s by L. Babai. Transparent proofs and limits to
approximations. First European Congress of Mathematicians.
1994.
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Summary

Outlook

In the beginning of the 90s a lot of things happened quickly. . .

• Shamir proved that IP = PSPACE
• one can also allow multiple provers which leads to the

complexity class MIP
• one accepts only if provers agree

• MIP = NEXP
• lead to the notion of PCP[q, r], where one checks only r entries

in a table of answer/query pairs of size 2q

• it was then shown that PCP[poly, poly] = NEXP and
PCP[log n,O(1)] = NP

• which yields strong results about approximation of
NP-complete problems

• for instance: consider a 7/8 approximation of 3SAT
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Summary

Block structure of lecture

• basic complexity classes

• probabilistic TMs and randomization

• interactive proofs

• approximations and PCP
• parallelization

• NC
• circuits
• descriptive complexity
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