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Lecture 15

Public Coins and Graph (Non)lsomorphism



Intro

Goal and Plan

Goal
¢ understand public coins and their relation to private coins

e get a reason why graph isomorphism might not be
NP-complete



Intro

Goal and Plan

Goal
¢ understand public coins and their relation to private coins

e get a reason why graph isomorphism might not be
NP-complete

Plan

e show that graph non-isomorphism has a two round
Arthur-Merlin proof; formally: GNI € AM[2]

« show that this implies Gl is not NP-complete unless =5 = I}



Intro

Agenda

IP and AM — recap

graph non-isomorphism as a problem about set sizes

tool: pairwise independent hash functions
an AM[2] protocol for GNI
improbability of NP-completeness of Gl



Definition Recap

IP

Definition (IP)
For an integer k > 1 that may depend on the input size, a language
L is in IP[k], if there is a probabilistic polynomial-time TM V that can
have a k-round interaction with a function P : {0,1}* — {0, 1}* such
that
e Completeness
x € L = AP.Pr[outy(V, P)(x) =1]>2/3
e Soundness
x¢ L = VYP.Prlouty(V,P)(x) =1] < 1/3
We define IP = (J»1 IP[N°].

e V has access to a random variable r €g {0, 1}™
e eg. a; = f(x,r)and az = f(x, a1, r)
e gcannotseer
= outy(V, P)(x) is a random variable where all probabilities are



Definition Recap

AM

Definition (AM)

 For every k the complexity class AN [k] is defined as the
subset of IP[k] obtained when the verfier's messages are
random bits only and also the only random bits used by V.
o AM = AM[2]

Such an interactive proof is called an Arthur-Merlin proof or a public
coin proof.



Definition Recap

Agenda

IP and AM - recap v/
graph non-isomorphism as a problem about set sizes

tool: pairwise independent hash functions
an AM[2] protocol for GNI
improbability of NP-completeness of Gl



GNI is an AM

Recasting GNI

e let Gy, G be graphs with nodes {1, ..., n} each
o we define a set S such that

e if Gy = Gy then |S| = n!

o if Gy # Gy then |S| = 2n!
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e idea: S is the set of graphs that are isomorphic to Gy OR to G»
e if G; = Gp, this set is small, otherwise not



GNI is an AM

Recasting GNI

let Gy, G2 be graphs with nodes {1,..., n} each
we define a set S such that

e if Gy = Gy then |S| = n!
o if Gy # Gy then |S| = 2n!

idea: S is the set of graphs that are isomorphic to Gy OR to Gy

if G1 = Gpo, this set is small, otherwise not
problem: automorphisms

e an automorphism of Gy is a permutation
n:{1,....,n} > {1,....n}such that 7(G) = G
o all automorphisms of graph G written aut(G)



GNI is an AM

The infamous set S

S={(H,n)|H=GjorH= Gy, n € aut(H)}



GNI is an AM

The infamous set S

S={(H,n)|H=GjorH= Gy, n € aut(H)}

e to convince the verifier that Gy ¢ G, the prover has to convince
the verifier that |S| = 2n! rather than n!

o that is the verifier should accept with high probability if |S| > K
for some K

* it should reject if |S| < K



GNI is an AM

Agenda

IP and AM - recap v/

graph non-isomorphism as a problem about set sizes v/
tool: pairwise independent hash functions

an AM[2] protocol for GNI

improbability of NP-completeness of Gl
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GNIl is an AM Hashing

Hash functions

e goal: store a set S C {0, 1}" to efficiently answer membership
XeS

e S could change dynamically
* |S| much smaller than 2™, possibly around 2% for k < m



GNIl is an AM Hashing

Hash functions

goal: store a set S C {0, 1}" to efficiently answer membership
XeS

S could change dynamically
|S| much smaller than 2™, possibly around 2 for k < m

to create a hash table of size 2k

e select a hash function h : {0, 1}™ — {0, 1}
e store x at h(x)

collision: h(x) = h(y) for x # y

choosing hash functions randomly from a collection, one can
expect h to be almost bijective if |S]| is app. 2



GNIl is an AM Hashing

Pairwise independent hash functions

Definition
Let Hry, « be a collection of functions from {0, 1} to {0, 1 K. We say
that Hy, « is pairwise independent if

e forevery x # x’ € {0,1}" and
o forevery y,y’ € {0,1}K and
PrhGR’Hm,k[h(X) =YA h(xl) = y,] =272k

e when h is choosen randomly (h(x), h(x")) is distributed
uniformly over {0, 1} x {0, 1}k

¢ such collections exist

¢ here: we only assume the existence

192



GNIl is an AM Hashing

Agenda

IP and AM - recap v/
graph non-isomorphism as a problem about set sizes v/

tool: pairwise independent hash functions v/
an AM[2] protocol for GNI
improbability of NP-completeness of Gl
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GNI is an AM Public coins for GNI

Goldwasser-Sipser Set Lower Bound Protocol

S c{o,1}m
both parties know a K
prover wants to convince verifier that |S| > K

verifier rejects with high probability if |S| < %
let k be an integer such that 2k-2 < K < 2k~1



GNI is an AM Public coins for GNI

Goldwasser-Sipser Set Lower Bound Protocol

The following protocol has two rounds and uses public coins!

Vv « randomly choose h : {0,1}™ — {0, 1}* from a pairwise
independent collection of hash functions Hp, «
« randomly choose y € {0, 1}¥
e send h and y to prover

P e findan x € S such that h(x) =y
e send x to V together with a certificate of membership of x in S

V if h(x) = y and x € S accept; otherwise reject
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GNI is an AM Public coins for GNI

Why the protocol works?

Intuition: If S is big enough (non-isomorphic case) then the prover
has a good chance to find a pre-image.

16



GNI is an AM Public coins for GNI

Why the protocol works?

Intuition: If S is big enough (non-isomorphic case) then the prover
has a good chance to find a pre-image.

Formally:
¢ show that there exists a p such that
« if |S| > K then Pr[dx € S.h(x) = y] is greater than $p

« if|S| < & then Pr[Ax € S.h(x) = y] is lower than £
e this is a probability gap which can be amplified by repetition
* one can choose p = %
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GNI is an AM Public coins for GNI

Putting it together

AM[2] public coin protocol for GNI

=

compute S (automorphisms) as above
prover and verifier run set lower bound protocol several times
verifier accepts by majority vote

using Chernoff bounds, this gives the desired completeness
and soundness probabilities

observe: only a constant number of iterations necessary which
can be executed in parallel

number of rounds stays at 2

Details: Arora-Barak, section 8.2



GNI is an AM Public coins for GNI

Agenda

IP and AM - recap v/
graph non-isomorphism as a problem about set sizes v/

tool: pairwise independent hash functions v/
an AM[2] protocol for GNI v/
improbability of NP-completeness of Gl
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On Graph Isomorphism

Graph Isomorphism

Theorem
IfGl = {{G1,Go) | Gy =

G} is NP-complete then = =

np
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Conclusion

What have we learnt?

graph isomorphism is not NP-complete unless the (polynomial)
hierarchy collapses
public coins are as expressive as private coins
o proof of GNI € AM[2] generalizes to IP[k] = AM[k + 2] (without
proof)
e one can also show AM[k] = AM[k + 1] for k > 2 (collapse)
e also not shown: perfect completeness for AM

Goldwasser-Sipser set lower bound protocol (which is in
AM[2])

hash functions as a useful tool

Up next: IP = PSPACE
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