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Lecture 12–13

Randomization and Polynomial Time

“Realistic computation somewhere between P and NP”



Agenda

• Motivation: From NP to a more realistic class by randomization
• Choosing the certificate at random
• Error reduction by rerunning

• Randomized poly-time with one-sided error: RP, coRP,ZPP
• Power of randomization with two-sided error: PP,BPP



Recap P

Definition (P)

For every L ⊆ {0, 1}∗:
L ∈ P if there is a poly-time TM M such that for every x ∈ {0, 1}∗:

x ∈ L ⇔ M(x) = 1.

• “poly-time TM M”:
• M deterministic
• M outputs {0, 1}
• There is a polynomial T(n) s.t. M halts on every x within T(|x |) steps.

• Problems in P are deemed “tractable”.



Recap NP

Theorem (Certificates)

For every L ⊆ {0, 1}∗:
L ∈ NP if and only if there exists a polynomial p : N→ N and a poly-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x |) : M(x, u) = 1

• Certificate u: satisfying assignment, independent set, 3-coloring, etc.
• NP captures the class of possibly (not) tractable computations:

• Don’t know how to compute u in poly-time, but
• if there is a u, then |u| is polynomial in |x |, and
• we can check in poly-time if a u is a certificate/solution.

• NDTMs can check all 2p(|x |) possible us in parallel.
• Seems unrealistic. Common conjecture: P , NP.
• Goal: Obtain from NP a more realistic class by randomization:

Choose u uniformly at random from {0, 1}p(|x |).
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Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some L ∈ NP decided by M using certificates u of length p(·):

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1} and RM,x := {0, 1}p(|x |) \ AM,x .

• If we choose u ∈ {0, 1}p(|x |) uniformly at random:
• AM,x is the event that u “says accept x”.
• RM,x is the event that u “says reject x”.

Definition (Accept/Reject certificates and probabilities (cont’d))

Pr [AM,x ] :=
|AM,x |

2p(|x |)
and Pr [RM,x ] :=

|RM,x |

2p(|x |)
= 1 − Pr [AM,x ] .

L ∈ NP iff ∀x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [AM,x ] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x ] = 0.
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Randomizing NP: Example SAT

• Input: CNF-formula φ with n variables.
• Output: Choose truth assignment u ∈ {0, 1}n uniformly at random.

• If u satisfies φ, output yes, φ ∈ SAT.
• Else, output probably, φ < SAT.

• If output is yes, φ ∈ SAT, then we know φ ∈ SAT for sure.
• But what if output is probably, φ < SAT?

• Consider φ = x1 ∧ x2 ∧ . . . ∧ xn ∈ SAT:
• Probability of probably, φ < SAT: Pr [RM,x ] = 1 − 2−n

• Called false negative.

• If we run this algorithm r-times,
prob. of false negative decreases to: (1 − 2−n)r ≈ e−r/2n

.
• Exponential number r ∼ 2n required to reduce this to any tolerable

error bound like 1/4 or 1/10.
• Not that helpful as SAT ∈ EXP (zero prob. of false negative).
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Randomizing NP: Conclusion

• Not enough to only choose certificate u at random,
we need to require that Pr [AM,x ] is significantly larger than 2−p(|x |);
otherwise we’ll stay in NP.

• Goal:
Polynomial number r(|x |) of reruns should make prob. of false
negatives arbitrary small.

• This holds if Pr [AM,x ] ≥ n−k for some k > 0:

(1 − Pr [AM,x ])c |x |k+d

≥
(
1 − 1/|x |k

)c |x |k+d

≈ e−c |x |d

as limm→∞(1 − 1/m)m = e−1.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Choosing the certificate at random X
• Error reduction by rerunning X

• Randomized poly-time with one-sided error: RP, coRP,ZPP
• Definitions
• Monte Carlo and Las Vegas algorithms
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP



Definition of RP

Definition (Randomized P (RP))

L ∈ RP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] = 0.

• P ⊆ RP ⊆ NP
• coRP := {L | L ∈ RP}
• RP unchanged if we replace ≥ 3/4 by ≥ n−k or ≥ 1 − 2−nk

(k > 0).

• Realistic model of computation? How to obtain random bits?
• “Slightly random sources”: see e.g. Papadimitriou p. 261

• One-sided error probabiliy for RP:
• False negatives: if x ∈ L , then Pr [RM,x ] ≤ 1/4.
• If M(x, u) = 1, output x ∈ L ; else output probably, x < L
• Error reduction by rerunning a polynomial number of times.
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coRP, ZPP

Lemma (coRP)

L ∈ coRP if and only if there exists a polynomial p : N→ N and a
polynomial-time TM M(x, u) using certificates u of length |u| = p(|x |)
such that for every x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] = 1 and x < L ⇒ Pr [AM,x ] ≤ 1/4.

• One-sided error probability for coRP:
• False positives: if x < L , then Pr [AM,x ] ≤ 1/4.
• If M(x, u) = 1, output probably, x ∈ L ; else output x < L

Definition (“Zero Probability of Error”-P (ZPP))

ZPP := RP ∩ coRP

• If L ∈ ZPP, then we have both an RP- and a coRP-TM for L .
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP

• Definitions X
• Monte Carlo and Las Vegas algorithms
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP



RP-algorithms

• Assume L ∈ RP decided by TM M(·, ·).
• Given input x:

• Choose u ∈ {0, 1}p(|x |) uniformly at random.
• Run M(x, u).
• If M(x, u) = 1, output: yes, x ∈ L .
• If M(x, u) = 0, output: probably, x < L .

• Called Monte Carlo algorithm.

• If we rerun this algorithm exactly k -times:
• If x ∈ L , probability that at least once yes, x ∈ L

≥ 1 − (1 − 3/4)k = 1 − 4−k

• but if x < L , we will never know for sure.

• Expected running time if we rerun till output yes, x ∈ L :
• If x ∈ L :

• Number of reruns geometrically distributed with success prob. ≥ 3/4, i.e.,
• the expected number of reruns is at most 4/3.
• Expected running time also polynomial.

• If x < L :
• We run forever.
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ZPP-algorithms

• Assume L ∈ ZPP.
• Then we have Monte Carlo algorithms for both x ∈ L and x ∈ L .
• Given x:

• Run both algorithms once.
• If both reply probably, then output don’t know.
• Otherwise forward the (unique) yes-reply.

• Called Las Vegas algorithm

• If we rerun this algorithm exactly k -times:
• If x ∈ L (x ∈ L ), probability that at least once yes, x ∈ L (yes, x ∈ L )

≥ 1 − (1 − 3/4)k = 1 − 4−k

• Expected running time if we rerun till output yes:
• In both cases expected number of reruns at most 4/3.
• So, randomized algorithm which decides L in expected polynomial

time.

• More on expected running time vs. exact running time later on.
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ZEROP

• Given: Multivariate polynomial p(x1, . . . , xk ), not necessarily
expanded, but evaluable in polynomial time.

• Wanted: Decide if p(x1, . . . , xk ) is the zero polynomial.

∣∣∣∣∣∣∣∣
0 y2 xy
z 0 y
0 yz xz


∣∣∣∣∣∣∣∣ = −y2(z · xz − 0) + xy(z · yz − 0) = −xy2z2 + xy2z2 = 0

• ZEROP := “All zero polynomials evaluable polynomial time”.
• E.g. determinant: substitute values for variables, then use

Gauß-elemination.
• Not known to be in P.



ZEROP

Lemma (cf. Papadimitriou p. 243)

Let p(x1, . . . , xk ) be a nonzero polynomial with each variable xi of degree
at most d. Then for M ∈ N:∣∣∣{(x1, . . . , xk ) ∈ {0, 1, . . . ,M − 1}k | p(x1, . . . , xk ) = 0}

∣∣∣ ≤ kdMk−1.

Let X1, . . . ,Xk be independent random variables, each uniformly
distributed on {0, 1, . . . ,M − 1}. Then for M = 4kd:

p < ZEROP⇒ Pr [p(X1, . . . ,Xk ) = 0] ≤
kdMk−1

Mk
=

kd
M

=
1
4
.

• So we can decide p ∈ ZEROP in coRP if
• we can evaluate p(·) in polynomial time, and
• d is polynomial in the representation of p.

• See Arora p. 130 for work around if d is exponential
• E.g. p(x) = (. . . ((x − 1)2)2 . . .)2.
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at most d. Then for M ∈ N:∣∣∣{(x1, . . . , xk ) ∈ {0, 1, . . . ,M − 1}k | p(x1, . . . , xk ) = 0}

∣∣∣ ≤ kdMk−1.

Let X1, . . . ,Xk be independent random variables, each uniformly
distributed on {0, 1, . . . ,M − 1}. Then for M = 4kd:

p < ZEROP⇒ Pr [p(X1, . . . ,Xk ) = 0] ≤
kdMk−1

Mk
=

kd
M

=
1
4
.

• So we can decide p ∈ ZEROP in coRP if
• we can evaluate p(·) in polynomial time, and
• d is polynomial in the representation of p.

• See Arora p. 130 for work around if d is exponential
• E.g. p(x) = (. . . ((x − 1)2)2 . . .)2.



Perfect Matchings in Bipartite Graphs

• Given: bipartite graph G = (U,V ,E) with

|U| = |V | = n and E ⊆ U × V .

• Wanted: M ⊆ E such that

∀(u, v), (u′, v ′) ∈ M : u , u′ ∧ v , v ′.

• Problem is known to be solvable in time O(n5) (and better).
• So it is in RP.
• Still, some “easy” randomized algorithm relying on ZEROP.
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Perfect Matchings in Bipartite Graphs

• For bipartite graph G = (U,V ,E) define square matrix M:

Mij =

{
xij if (ui , vj) ∈ E
0 else .

• Output:
• “has perfect matching” if det(M) < ZEROP
• “might not have perfect matching” if det(M) ∈ ZEROP

u1

u2

u3

v1

v2

v3

∣∣∣∣∣∣∣∣
 0 x1,2 x1,3

x2,1 0 x2,3

0 x3,2 0


∣∣∣∣∣∣∣∣ = −x1,3x2,1x3,2

• Relies on Leibniz formula: det M =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Mi,σ(i).
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X

• Definitions X
• Monte Carlo and Las Vegas algorithms X
• Examples: ZEROP and perfect matchings X

• Power of randomization with two-sided error: PP,BPP
• Enlarging RP by false negatives and false positives
• Comparison: NP,RP, coRP,ZPP,BPP,PP
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy



Probability of error for both x ∈ L and x < L

• RP obtained from NP by
• choosing certificate u uniformly at random
• requiring a fixed fraction of accept-certificates if x ∈ L

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] = 0.

• RP-algorithms can only make errors for x ∈ L .

• By allowing both errors for both cases, can we obtain a class that is
• larger than RP,
• but still more realistic than NP?

• Assume we change the definition of RP to:

x ∈ L ⇔ Pr [AM,x ] ≥ 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L : Pr [RM,x ] ≤ 1/4
• False positives: If x < L : Pr [AM,x ] < 3/4
• Outputs: probably, x ∈ L and probably, x < L
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Probabilistic Polynomial Time (PP)

Definition (PP)

L ∈ PP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇔ Pr [AM,x ] ≥ 3/4.

• RP ⊆ PP ⊆ EXP
• One can show:

• May replace ≥ by >.
• May replace 3/4 by 1/2.
• PP = coPP

• PP: “x ∈ L iff x is accepted by a majority”
• If x < L , then x is not accepted by a majority (, a majority rejects x!)

• Next: PP is at least as untractable as NP.
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NP ⊆ PP

Theorem

NP ⊆ PP

• Assume TM M(x, u) for L ∈ NP uses certificates u of length p(|x |).
• Consider TM N(x,w) with |w | = p(|x |) + 2:

• If w = 00u, define N(x,w) := M(x, u).
• Else N(x,w) = 1 iff w , 11 . . . 1.

• Choose w uniformly on {0, 1}p(|x |)+2 at random:
• If x ∈ L : Pr [AN,x ] ≥

3/4 − 2−p(|x |)−2 + 2−p(|x |)−2 = 3/4

• If x < L : Pr [AN,x ] =

3/4 − 2−p(|x |)−2 < 3/4
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“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x ] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] < 3/4

by adding enough accept-certificates, i.e.,

• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P



“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x ] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] < 3/4

by adding enough accept-certificates, i.e.,

• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P



“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x ] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] < 3/4

by adding enough accept-certificates, i.e.,
• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P



“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x ] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [AM,x ] < 3/4

by adding enough accept-certificates, i.e.,
• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P



BPP

Definition (BPP)

L ∈ BPP if there exists a polynomial p : N→ N and a polynomial-time
TM M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [RM,x ] ≥ 3/4.

• RP ⊆ BPP = coBPP ⊆ PP
• Reminder: if L ∈ PP, then x < L ⇒ Pr [AM,x ] < 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L , then Pr [RM,x ] ≤ 1/4.
• False positives: If x < L , then Pr [AM,x ] ≤ 1/4.
• Outputs: probably, x ∈ L and probably, x < L .
• Error reduction to 2−n by rerunning (later).

• It is unknown whether BPP = NP or even BPP = P!
• Under some non-trivial but “very reasonable” assumptions: BPP = P!

(Arora p. 402)
• BPP = “most comprehensive, yet plausible notion of realistic

computation” (Papadimitriou p. 259)
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PP
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy



NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ NP:
• if x ∈ L : at least one
• if x < L : all
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Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.
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choosing in every computation step the transition function uniformly at
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probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ RP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 1] = 0.
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We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ coRP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] = 1 and x < L ⇒ Pr [M(x) = 1] ≤ 1/4.
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probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary
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x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 1] ≤ 1/4.
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A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
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Corollary

L ∈ PP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 1] < 3/4.



Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy



Expected vs. Exact Running Time

• Recall: if L ∈ ZPP
• RP-algorithms for L and L .
• Rerun both algorithms on x until one outputs yes.
• This decides L in expected polynomial time.
• But might run infinitely long in the worst case.

• So, is expected time more powerful than exact time?



Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let TM,x be the random variable that counts the steps of a
computation of M on x, i.e., Pr [TM,x ≤ t] is the probability that M halts on
x within at most t steps.
We say that M runs in expected time T(n) if E [TM,x ] ≤ T(|x |) for every x.

• Possibly infinite runs.
• So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial T : N→ N and a PTM
M such that for every x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 0] ≥ 3/4

and E [TM,x ] ≤ T(|x |).
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Expected Running Time

• Assume L ∈ BPeP.
• PTM M deciding L within expected running time T(n).

• Probability that M does more than k steps on input x:

Pr [TM,x ≥ k ] ≤
E [TM,x ]

k
≤

T(|x |)
k

by Markov’s inequality.
• So, for k = 10T(|x |) (polynomial in |x |):

Pr [TM,x ≥ 10T(|x |)] ≤ 0.1

for every input x.
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Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts:
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.



Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.

• Error probabilities:
• Assume x ∈ L .
• If simulation halts:
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.



Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts:
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.



Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.



Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise: = 1/2

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.



Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise: = 1/2
• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸

≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.



Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise: = 1/2
• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸                    ︷︷                    ︸

≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸                            ︷︷                            ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.



Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy



Error reduction

• Consider: L ∈ RP:
• Probability for error after r reruns:
• if x < L : = 0
• if x ∈ L : ≤ 4−r , i.e., r-times probably, x < L .

• Similarly for L ∈ coRP and L ∈ ZPP.
• What if L ∈ BPP?

• We cannot wait for a yes
• Instead use the majority.
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• We cannot wait for a yes
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Error reduction for BPP

Definition (BPP(f))

Let f : N→ Q be a function.
L ∈ BPP(f) if there exists a polynomial p : N→ N and a polynomial-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x ] ≥ f(|x |) and x < L ⇒ Pr [RM,x ] ≥ f(|x |).

Theorem (Error reduction for BPP)

For any c > 0:
BPP = BPP(1/2 + n−c)

• The longer the input, the less dominant the “majority” has to be.



Error reduction for BPP (Proof)

• Assume L ∈ BPP, and
• Choose any c > 0.

• There exists certainly an n0 s.t. for all n ≥ n0:

1/2 + n−c ≤ 3/4.

• So: L ∩ {0, 1}≥n0 ∈ BPP(1/2 + n−c).
• Thus, BPP(1/2 + n−c)-algorithm for L :

• If |x | < n0, decide x ∈ L in P (error prob. = 0)
• Else run BPP-algorithm (error prob. ≤ 1/4)
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Error reduction for BPP (Proof)

• Let L ∈ BPP(1/2 + n−c) for some c > 0.

• Run 1/2 + n−c-algorithm r-times on input x:
• Outputs: y = y1y2y3 . . . yr

• with yi ∈ {0, 1} and yi = 1 if output probably, x ∈ L
• Y1 =

∑r
i=1 yi number of 1s

• Y0 = r − Y1 number of 0s

• Probability of yi = 1 if x ∈ L , resp. yi = 0 if x < L :

x ∈ L : Pr [yi = 1] ≥ 1/2+|x |−c resp. x < L : Pr [yi = 0] ≥ 1/2+|x |−c

(yi indepedent, Bernoulli distributed RVs)
• Expected number of 1s for x ∈ L , resp. of 0s if x < L :

x ∈ L : E [Y1] ≥ r/2 + r |x |−c resp. x < L : E [Y0] ≥ r/2 + r |x |−c

• Assume r = |x |c+d for some d ∈ N:

x ∈ L : E [Y1 − Y0] ≥ 2|x |d resp. x < L : E [Y0 − Y1] ≥ 2|x |d

i.e., expect significant majority in favor of correct answer.
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Error reduction for BPP (Proof)

• Idea: let majority decide, i.e., output x ∈ L iff Y1 > Y0.

• Assume x ∈ L in the following
• Case x < L symmetric:
• set zi := 1 − yi and consider Y0 instead of Y1

• Probability that “majority” wrongly says x < L :

Pr [Y1 ≤ Y0] = Pr [Y1 ≤ r/2]

• Chernoff bound: for X ∼ Bin(n; p) with µ := E [X ] and δ ∈ (0, 1)

Pr [X ≤ (1 − δ)µ] ≤ e−µδ
2/2

• Thus:

Pr [Y1 ≤ r/2] = Pr [Y1 ≤ (1 − (1 − r/(2µ)))µ] ≤ e−µδ
2/2

as long as δ := 1 − r/(2µ) ∈ (0, 1).
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Error reduction for BPP (Proof)

• Bounds on δ = 1 − r/(2µ):

0 < δ < 1⇔ 0 < r/2 < µ⇐ r/2 + r |x |−c ≤ µ

• Thus, choose r s.t.

Pr [Y1 ≤ r/2] ≤ e−µδ
2/2 ≤ 1/4.

i.e.,
µδ2 ≥ 2 loge 4.

• With
µ ≥ r/2 + r |x |−c

we obtain:

µδ2 = (µ−r/2)(1−(r/2)/µ) ≥ r |x |−c
(
1 −

r/2
r/2 + r |x |−c

)
= r ·

|x |−2c

1/2 + |x |−c

• So, choose r ≥ (loge 4) · (|x |2c + 2|x |c).



Error reduction for BPP (Proof)

• For x < L we obtain analogously:

Pr [Y0 ≤ Y1] ≤ 1/4 if r ≥ (loge 4) · (|x |2c + 2|x |c).

• So, a polynomial number of rounds suffices to reduce error
probability to at most 1/4.

• Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:
BPP = BPP(1 − 2−nd

)

• Ex.: Show the theorem.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPPX
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy



Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx ] ≤

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.
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Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPPX
• Some kind of derandomization for BPPX
• BPP in the polynomial hierarchy



BPP in the Polynomial Hierarchy PH

Theorem

BPP ⊆ Σp
2 ∩ Π

p
2

• Reminder:
• Definition of L ∈ Σp

2 :

x ∈ L iff ∃u ∈ {0, 1}p(|x |)∀v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• Definition of L ∈ Πp
2 :

x ∈ L iff ∀u ∈ {0, 1}p(|x |)∃v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• As BPP = coBPP it suffices to show BPP ⊆ Σp
2 :

L ∈ BPP⇒ L ∈ BPP⇒ L ∈ Σp
2 ⇒ L ∈ Πp

2
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BPP in the Polynomial Hierarchy PH

• We use again that BPP = BPP(1 − 4−n).
• Let p(·) be the polynomial bounding the certificate length.
• Recall AM,x : “accept-certificates”

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1}

• Then

x ∈ L ⇒ |AM,x | ≥ (1 − 4−|x |)2p(|x |) and x < L ⇒ |AM,x | ≤ 4−n · 2p(|x |)

• Need a formula to distinguish the two cases.
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BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume |x | = 1 and p(|x |) = 3,
• i.e., possible certificates in {0, 1}3.
• If x ∈ L , then |AM,x | ≥ 3/4 · 23 = 6.
• If x < L , then |AM,x | ≤ 1/4 · 23 = 2.



BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x < L , i.e., |AM,x | ≤ 1/4 · 8 = 2

• Choose any u1, u2 ∈ {0, 1}3.
• By chance, we might hit AM,x .
• Claim: But there is some r ∈ {0, 1}3 s.t.

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x = ∅.

(⊕: bitwise xor)
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BPP in the Polynomial Hierarchy PH
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001 101

011 111

• Note:
ui ⊕ r ∈ AM,x iff r ∈ AM,x ⊕ ui .

• So, choose

r ∈ AM,x ⊕ u1 ∪ AM,x ⊕ u2 = {000, 011} ∪ {101, 110}.

• E.g. r = 001.
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• Note:
ui ⊕ r ∈ AM,x iff r ∈ AM,x ⊕ ui .

• So, choose

r ∈ AM,x ⊕ u1 ∪ AM,x ⊕ u2 = {000, 011} ∪ {101, 110}.

• E.g. r = 001.
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011 111

• Assume x ∈ L , i.e., |AM,x | ≥ 6.

• Claim: We can choose u1, u2 s.t. for any r ∈ {0, 1}3

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x , ∅.

• Note: this is exactly the negation of the previous claim.
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• Assume x ∈ L , i.e., |AM,x | ≥ 6.
• Claim: We can choose u1, u2 s.t. for any r ∈ {0, 1}3

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x , ∅.

• Note: this is exactly the negation of the previous claim.
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• E.g., take u1 = 000.

• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.
• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .
• E.g., u2 = 011.
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• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.

• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .
• E.g., u2 = 011.
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• E.g., take u1 = 000.
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• Summary:

x ∈ L ∩ {0, 1}1 iff ∃u1, u2 ∈ {0, 1}3∀r ∈ {0, 1}3 :
∨

i=1,2

ui ⊕ r ∈ AM,x .

Reminder: ui ⊕ r ∈ AM,x iff M(x, ui ⊕ r) = 1.

• So, this is in Σp
2 .

• And works also for |x | > 1 and arbitrary p(|x |).
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• Summary:

x ∈ L ∩ {0, 1}1 iff ∃u1, u2 ∈ {0, 1}3∀r ∈ {0, 1}3 :
∨

i=1,2

ui ⊕ r ∈ AM,x .

Reminder: ui ⊕ r ∈ AM,x iff M(x, ui ⊕ r) = 1.
• So, this is in Σp

2 .
• And works also for |x | > 1 and arbitrary p(|x |).



BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Note, the certificate u1u2 . . . uk has length polynomial in |x |.
• So, this formula represents a computation in Σp

2 .
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Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x < L : To show there is always an r s.t.

k∧
i=1

r ⊕ ui < AM,x ≡ r <
k⋃

i=1

ui ⊕ AM,x .

• Size of the complement of this set:∣∣∣∣∣∣∣
k⋃

i=1

ui ⊕ AM,x

∣∣∣∣∣∣∣ ≤
k∑

i=1

∣∣∣ui ⊕ AM,x

∣∣∣ = k
∣∣∣AM,x

∣∣∣ ≤ k4−|x |2p(|x |) < 2p(|x |).

• So, this set cannot be empty no matter how we choose u1, . . . , uk .
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Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x ] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x ]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−4kn < 1.
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k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x ] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x ]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−4kn < 1.
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Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• For both cases there is an n0 s.t. the bounds hold for all x with
|x | > n0.

• L ∩ {0, 1}n0 can be decided trivially in P.



Summary

• Obtain RP from NP by
• choosing the certificate (transition function) uniformaly at random
• requiring a bound on Pr [AM,x ] if x ∈ L s.t.
• error prob. can be reduced within a polynomial number of reruns.

• One-sided probability of error:
• RP: false negatives
• coRP: false postives
• Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP

• ZPP := RP ∩ coRP can be decided in expected polynomial time
• Zero probability of error (if we wait for the definitiv answer)
• Las Vegas algorithms
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Summary

• Obtained PP from RP by
• allowing also for false positives
• Error probabilities depend on each other: ≤ 1/4 and < 1 − 1/4
• NP ⊆ PP: “PP allows for trading one error prob. for the other”

• Obtained BPP from PP by
• bounding both error prob. independently of each other.
• Papadimitriou: “most comprehensive, yet plausible notion of realistic

computation”
• Conjecture: BPP = P
• Expected running time as powerful as exact running time.
• One certificate un for all x with |x | = n.
• Error reduction to 2−nk

within a polynomial number of reruns.
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Summary

P ZPP

RP

coRP

NP

BPP = coBPP

coNP

Πp
2 ∩ Σ

p
2

PP = coPP

PSPACE

• Πp
2 ∩ Σ

p
2 ⊆ PP unknown.

• NP ∪ coNP ⊆ PP known.



Summary

P ZPP

RP

coRP

NP

BPP = coBPP

coNP

Πp
2 ∩ Σ

p
2

PP = coPP

PSPACE

• Gödel Price (1998) for Toda’s theorem (1989): PH ⊆ PPP

• PPP: poly-time TMs having access to a PP-oracle.
• If PP ⊆ Σp

k for some k , then PH = Σp
k .

• If PP ⊆ PH, then PH collapses at some finite level as PP has complete
problems (see exercises).



Syntactic and Semantic Complexity Classes

• Just mentioned: PP has complete probems
• φ ∈ MAJSAT iff at least 2n−1 + 1 satisfying assignments of 2n possible

(see exercises).

• Unknown if there are complete problems for ZPP,RP,BPP.

• Reason to believe that there are none:
• P,NP, coNP are syntatic complexity classes (complete problems).
• ZPP,RP, coRP,BPP are semantic complexity classes.

• Example:
• NP:

x ∈ L ⇔ Pr [AM,x ] > 0.

Every poly-time TM M(x, u) defines a language in NP.
• BPP:

x ∈ L ⇒ Pr [AM,x ] ≥ 3/4 and x < L ⇒ Pr [RM,x ] ≥ 3/4.

Not every poly-time TM M(x, u) defines a language in BPP.

• Ex.: What about PP?
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Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition
For a poly-time M(x, u) using certificates u ∈ {0, 1}p(|x |) set

LM(x) := y0y1 . . . y2p(|x |)−1 with yi = M(x, ui) and (ui)2 = i

The leaf-language of M is then LM := {LM(x) | x ∈ {0, 1}∗}.
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u0 u1 u2 u3 u4 u5 u6 u7
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TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition (cont’d)

For A ,R ⊆ {0, 1}∗ with A ∩ R = ∅ the class C[A ,R] consists of all
language L for which there is a TM M(x, u) s.t. ∀x ∈ {0, 1}∗:

x ∈ L ⇒ LM(x) ∈ A and x < L ⇒ LM(x) ∈ R .
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Definition (cont’d)

C[A ,R] is called syntactic if A ∪ R = {0, 1}∗, otherwise it is called
semantic.
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• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]
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• What about P?

• P = P[1(0 + 1)∗, 0(0 + 1)∗].
• Certificate 0 . . . 0 can always be used (compare this to BPP)
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