
Complexity Theory

Jan Křetı́nský

Chair for Foundations of Software Reliability
and Theoretical Computer Science

Technical University of Munich

Summer 2016

Based on slides by Jörg Kreiker

1

Lecture 12–13

Randomization and Polynomial Time

“Realistic computation somewhere between P and NP”

Agenda

• Motivation: From NP to a more realistic class by randomization
• Choosing the certificate at random
• Error reduction by rerunning

• Randomized poly-time with one-sided error: RP, coRP,ZPP
• Power of randomization with two-sided error: PP,BPP

Recap P

Definition (P)

For every L ⊆ {0, 1}∗:
L ∈ P if there is a poly-time TM M such that for every x ∈ {0, 1}∗:

x ∈ L ⇔ M(x) = 1.

• “poly-time TM M”:
• M deterministic
• M outputs {0, 1}
• There is a polynomial T(n) s.t. M halts on every x within T(|x |) steps.

• Problems in P are deemed “tractable”.

Recap NP

Theorem (Certificates)

For every L ⊆ {0, 1}∗:
L ∈ NP if and only if there exists a polynomial p : N→ N and a poly-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x |) : M(x, u) = 1

• Certificate u: satisfying assignment, independent set, 3-coloring, etc.
• NP captures the class of possibly (not) tractable computations:

• Don’t know how to compute u in poly-time, but
• if there is a u, then |u| is polynomial in |x |, and
• we can check in poly-time if a u is a certificate/solution.

• NDTMs can check all 2p(|x |) possible us in parallel.
• Seems unrealistic. Common conjecture: P , NP.
• Goal: Obtain from NP a more realistic class by randomization:

Choose u uniformly at random from {0, 1}p(|x |).

Recap NP

Theorem (Certificates)

For every L ⊆ {0, 1}∗:
L ∈ NP if and only if there exists a polynomial p : N→ N and a poly-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x |) : M(x, u) = 1

• Certificate u: satisfying assignment, independent set, 3-coloring, etc.
• NP captures the class of possibly (not) tractable computations:

• Don’t know how to compute u in poly-time, but
• if there is a u, then |u| is polynomial in |x |, and
• we can check in poly-time if a u is a certificate/solution.

• NDTMs can check all 2p(|x |) possible us in parallel.
• Seems unrealistic. Common conjecture: P , NP.

• Goal: Obtain from NP a more realistic class by randomization:

Choose u uniformly at random from {0, 1}p(|x |).

Recap NP

Theorem (Certificates)

For every L ⊆ {0, 1}∗:
L ∈ NP if and only if there exists a polynomial p : N→ N and a poly-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x |) : M(x, u) = 1

• Certificate u: satisfying assignment, independent set, 3-coloring, etc.
• NP captures the class of possibly (not) tractable computations:

• Don’t know how to compute u in poly-time, but
• if there is a u, then |u| is polynomial in |x |, and
• we can check in poly-time if a u is a certificate/solution.

• NDTMs can check all 2p(|x |) possible us in parallel.
• Seems unrealistic. Common conjecture: P , NP.
• Goal: Obtain from NP a more realistic class by randomization:

Choose u uniformly at random from {0, 1}p(|x |).

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some L ∈ NP decided by M using certificates u of length p(·):

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1} and RM,x := {0, 1}p(|x |) \ AM,x .

• If we choose u ∈ {0, 1}p(|x |) uniformly at random:
• AM,x is the event that u “says accept x”.
• RM,x is the event that u “says reject x”.

Definition (Accept/Reject certificates and probabilities (cont’d))

Pr [AM,x] :=
|AM,x |

2p(|x |)
and Pr [RM,x] :=

|RM,x |

2p(|x |)
= 1 − Pr [AM,x] .

L ∈ NP iff ∀x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0.

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some L ∈ NP decided by M using certificates u of length p(·):

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1} and RM,x := {0, 1}p(|x |) \ AM,x .

• If we choose u ∈ {0, 1}p(|x |) uniformly at random:
• AM,x is the event that u “says accept x”.
• RM,x is the event that u “says reject x”.

Definition (Accept/Reject certificates and probabilities (cont’d))

Pr [AM,x] :=
|AM,x |

2p(|x |)
and Pr [RM,x] :=

|RM,x |

2p(|x |)
= 1 − Pr [AM,x] .

L ∈ NP iff ∀x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0.

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some L ∈ NP decided by M using certificates u of length p(·):

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1} and RM,x := {0, 1}p(|x |) \ AM,x .

• If we choose u ∈ {0, 1}p(|x |) uniformly at random:
• AM,x is the event that u “says accept x”.
• RM,x is the event that u “says reject x”.

Definition (Accept/Reject certificates and probabilities (cont’d))

Pr [AM,x] :=
|AM,x |

2p(|x |)
and Pr [RM,x] :=

|RM,x |

2p(|x |)
= 1 − Pr [AM,x] .

L ∈ NP iff ∀x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0.

Randomizing NP

Definition (Accept/Reject certificates and probabilities)

Fix some L ∈ NP decided by M using certificates u of length p(·):

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1} and RM,x := {0, 1}p(|x |) \ AM,x .

• If we choose u ∈ {0, 1}p(|x |) uniformly at random:
• AM,x is the event that u “says accept x”.
• RM,x is the event that u “says reject x”.

Definition (Accept/Reject certificates and probabilities (cont’d))

Pr [AM,x] :=
|AM,x |

2p(|x |)
and Pr [RM,x] :=

|RM,x |

2p(|x |)
= 1 − Pr [AM,x] .

L ∈ NP iff ∀x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0.

Randomizing NP: Example SAT

• Input: CNF-formula φ with n variables.
• Output: Choose truth assignment u ∈ {0, 1}n uniformly at random.

• If u satisfies φ, output yes, φ ∈ SAT.
• Else, output probably, φ < SAT.

• If output is yes, φ ∈ SAT, then we know φ ∈ SAT for sure.
• But what if output is probably, φ < SAT?

• Consider φ = x1 ∧ x2 ∧ . . . ∧ xn ∈ SAT:
• Probability of probably, φ < SAT: Pr [RM,x] = 1 − 2−n

• Called false negative.

• If we run this algorithm r-times,
prob. of false negative decreases to: (1 − 2−n)r ≈ e−r/2n

.
• Exponential number r ∼ 2n required to reduce this to any tolerable

error bound like 1/4 or 1/10.
• Not that helpful as SAT ∈ EXP (zero prob. of false negative).

Randomizing NP: Example SAT

• Input: CNF-formula φ with n variables.
• Output: Choose truth assignment u ∈ {0, 1}n uniformly at random.

• If u satisfies φ, output yes, φ ∈ SAT.
• Else, output probably, φ < SAT.

• If output is yes, φ ∈ SAT, then we know φ ∈ SAT for sure.
• But what if output is probably, φ < SAT?
• Consider φ = x1 ∧ x2 ∧ . . . ∧ xn ∈ SAT:

• Probability of probably, φ < SAT: Pr [RM,x] = 1 − 2−n

• Called false negative.

• If we run this algorithm r-times,
prob. of false negative decreases to: (1 − 2−n)r ≈ e−r/2n

.
• Exponential number r ∼ 2n required to reduce this to any tolerable

error bound like 1/4 or 1/10.
• Not that helpful as SAT ∈ EXP (zero prob. of false negative).

Randomizing NP: Example SAT

• Input: CNF-formula φ with n variables.
• Output: Choose truth assignment u ∈ {0, 1}n uniformly at random.

• If u satisfies φ, output yes, φ ∈ SAT.
• Else, output probably, φ < SAT.

• If output is yes, φ ∈ SAT, then we know φ ∈ SAT for sure.
• But what if output is probably, φ < SAT?
• Consider φ = x1 ∧ x2 ∧ . . . ∧ xn ∈ SAT:

• Probability of probably, φ < SAT: Pr [RM,x] = 1 − 2−n

• Called false negative.

• If we run this algorithm r-times,
prob. of false negative decreases to: (1 − 2−n)r ≈ e−r/2n

.

• Exponential number r ∼ 2n required to reduce this to any tolerable
error bound like 1/4 or 1/10.

• Not that helpful as SAT ∈ EXP (zero prob. of false negative).

Randomizing NP: Example SAT

• Input: CNF-formula φ with n variables.
• Output: Choose truth assignment u ∈ {0, 1}n uniformly at random.

• If u satisfies φ, output yes, φ ∈ SAT.
• Else, output probably, φ < SAT.

• If output is yes, φ ∈ SAT, then we know φ ∈ SAT for sure.
• But what if output is probably, φ < SAT?
• Consider φ = x1 ∧ x2 ∧ . . . ∧ xn ∈ SAT:

• Probability of probably, φ < SAT: Pr [RM,x] = 1 − 2−n

• Called false negative.

• If we run this algorithm r-times,
prob. of false negative decreases to: (1 − 2−n)r ≈ e−r/2n

.
• Exponential number r ∼ 2n required to reduce this to any tolerable

error bound like 1/4 or 1/10.
• Not that helpful as SAT ∈ EXP (zero prob. of false negative).

Randomizing NP: Conclusion

• Not enough to only choose certificate u at random,
we need to require that Pr [AM,x] is significantly larger than 2−p(|x |);
otherwise we’ll stay in NP.

• Goal:
Polynomial number r(|x |) of reruns should make prob. of false
negatives arbitrary small.

• This holds if Pr [AM,x] ≥ n−k for some k > 0:

(1 − Pr [AM,x])c |x |k+d

≥
(
1 − 1/|x |k

)c |x |k+d

≈ e−c |x |d

as limm→∞(1 − 1/m)m = e−1.

Randomizing NP: Conclusion

• Not enough to only choose certificate u at random,
we need to require that Pr [AM,x] is significantly larger than 2−p(|x |);
otherwise we’ll stay in NP.

• Goal:
Polynomial number r(|x |) of reruns should make prob. of false
negatives arbitrary small.

• This holds if Pr [AM,x] ≥ n−k for some k > 0:

(1 − Pr [AM,x])c |x |k+d

≥
(
1 − 1/|x |k

)c |x |k+d

≈ e−c |x |d

as limm→∞(1 − 1/m)m = e−1.

Randomizing NP: Conclusion

• Not enough to only choose certificate u at random,
we need to require that Pr [AM,x] is significantly larger than 2−p(|x |);
otherwise we’ll stay in NP.

• Goal:
Polynomial number r(|x |) of reruns should make prob. of false
negatives arbitrary small.

• This holds if Pr [AM,x] ≥ n−k for some k > 0:

(1 − Pr [AM,x])c |x |k+d

≥
(
1 − 1/|x |k

)c |x |k+d

≈ e−c |x |d

as limm→∞(1 − 1/m)m = e−1.

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Choosing the certificate at random X
• Error reduction by rerunning X

• Randomized poly-time with one-sided error: RP, coRP,ZPP
• Definitions
• Monte Carlo and Las Vegas algorithms
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP

Definition of RP

Definition (Randomized P (RP))

L ∈ RP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] = 0.

• P ⊆ RP ⊆ NP
• coRP := {L | L ∈ RP}
• RP unchanged if we replace ≥ 3/4 by ≥ n−k or ≥ 1 − 2−nk

(k > 0).

• Realistic model of computation? How to obtain random bits?
• “Slightly random sources”: see e.g. Papadimitriou p. 261

• One-sided error probabiliy for RP:
• False negatives: if x ∈ L , then Pr [RM,x] ≤ 1/4.
• If M(x, u) = 1, output x ∈ L ; else output probably, x < L
• Error reduction by rerunning a polynomial number of times.

Definition of RP

Definition (Randomized P (RP))

L ∈ RP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] = 0.

• P ⊆ RP ⊆ NP
• coRP := {L | L ∈ RP}
• RP unchanged if we replace ≥ 3/4 by ≥ n−k or ≥ 1 − 2−nk

(k > 0).
• Realistic model of computation? How to obtain random bits?

• “Slightly random sources”: see e.g. Papadimitriou p. 261

• One-sided error probabiliy for RP:
• False negatives: if x ∈ L , then Pr [RM,x] ≤ 1/4.
• If M(x, u) = 1, output x ∈ L ; else output probably, x < L
• Error reduction by rerunning a polynomial number of times.

Definition of RP

Definition (Randomized P (RP))

L ∈ RP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] = 0.

• P ⊆ RP ⊆ NP
• coRP := {L | L ∈ RP}
• RP unchanged if we replace ≥ 3/4 by ≥ n−k or ≥ 1 − 2−nk

(k > 0).
• Realistic model of computation? How to obtain random bits?

• “Slightly random sources”: see e.g. Papadimitriou p. 261

• One-sided error probabiliy for RP:
• False negatives: if x ∈ L , then Pr [RM,x] ≤ 1/4.
• If M(x, u) = 1, output x ∈ L ; else output probably, x < L
• Error reduction by rerunning a polynomial number of times.

coRP, ZPP

Lemma (coRP)

L ∈ coRP if and only if there exists a polynomial p : N→ N and a
polynomial-time TM M(x, u) using certificates u of length |u| = p(|x |)
such that for every x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] = 1 and x < L ⇒ Pr [AM,x] ≤ 1/4.

• One-sided error probability for coRP:
• False positives: if x < L , then Pr [AM,x] ≤ 1/4.
• If M(x, u) = 1, output probably, x ∈ L ; else output x < L

Definition (“Zero Probability of Error”-P (ZPP))

ZPP := RP ∩ coRP

• If L ∈ ZPP, then we have both an RP- and a coRP-TM for L .

coRP, ZPP

Lemma (coRP)

L ∈ coRP if and only if there exists a polynomial p : N→ N and a
polynomial-time TM M(x, u) using certificates u of length |u| = p(|x |)
such that for every x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] = 1 and x < L ⇒ Pr [AM,x] ≤ 1/4.

• One-sided error probability for coRP:
• False positives: if x < L , then Pr [AM,x] ≤ 1/4.
• If M(x, u) = 1, output probably, x ∈ L ; else output x < L

Definition (“Zero Probability of Error”-P (ZPP))

ZPP := RP ∩ coRP

• If L ∈ ZPP, then we have both an RP- and a coRP-TM for L .

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP

• Definitions X
• Monte Carlo and Las Vegas algorithms
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP

RP-algorithms

• Assume L ∈ RP decided by TM M(·, ·).
• Given input x:

• Choose u ∈ {0, 1}p(|x |) uniformly at random.
• Run M(x, u).
• If M(x, u) = 1, output: yes, x ∈ L .
• If M(x, u) = 0, output: probably, x < L .

• Called Monte Carlo algorithm.

• If we rerun this algorithm exactly k -times:
• If x ∈ L , probability that at least once yes, x ∈ L

≥ 1 − (1 − 3/4)k = 1 − 4−k

• but if x < L , we will never know for sure.

• Expected running time if we rerun till output yes, x ∈ L :
• If x ∈ L :

• Number of reruns geometrically distributed with success prob. ≥ 3/4, i.e.,
• the expected number of reruns is at most 4/3.
• Expected running time also polynomial.

• If x < L :
• We run forever.

RP-algorithms

• Assume L ∈ RP decided by TM M(·, ·).
• Given input x:

• Choose u ∈ {0, 1}p(|x |) uniformly at random.
• Run M(x, u).
• If M(x, u) = 1, output: yes, x ∈ L .
• If M(x, u) = 0, output: probably, x < L .

• Called Monte Carlo algorithm.
• If we rerun this algorithm exactly k -times:

• If x ∈ L , probability that at least once yes, x ∈ L

≥ 1 − (1 − 3/4)k = 1 − 4−k

• but if x < L , we will never know for sure.

• Expected running time if we rerun till output yes, x ∈ L :
• If x ∈ L :

• Number of reruns geometrically distributed with success prob. ≥ 3/4, i.e.,
• the expected number of reruns is at most 4/3.
• Expected running time also polynomial.

• If x < L :
• We run forever.

RP-algorithms

• Assume L ∈ RP decided by TM M(·, ·).
• Given input x:

• Choose u ∈ {0, 1}p(|x |) uniformly at random.
• Run M(x, u).
• If M(x, u) = 1, output: yes, x ∈ L .
• If M(x, u) = 0, output: probably, x < L .

• Called Monte Carlo algorithm.
• If we rerun this algorithm exactly k -times:

• If x ∈ L , probability that at least once yes, x ∈ L

≥ 1 − (1 − 3/4)k = 1 − 4−k

• but if x < L , we will never know for sure.

• Expected running time if we rerun till output yes, x ∈ L :
• If x ∈ L :

• Number of reruns geometrically distributed with success prob. ≥ 3/4, i.e.,
• the expected number of reruns is at most 4/3.
• Expected running time also polynomial.

• If x < L :
• We run forever.

ZPP-algorithms

• Assume L ∈ ZPP.
• Then we have Monte Carlo algorithms for both x ∈ L and x ∈ L .
• Given x:

• Run both algorithms once.
• If both reply probably, then output don’t know.
• Otherwise forward the (unique) yes-reply.

• Called Las Vegas algorithm

• If we rerun this algorithm exactly k -times:
• If x ∈ L (x ∈ L), probability that at least once yes, x ∈ L (yes, x ∈ L)

≥ 1 − (1 − 3/4)k = 1 − 4−k

• Expected running time if we rerun till output yes:
• In both cases expected number of reruns at most 4/3.
• So, randomized algorithm which decides L in expected polynomial

time.

• More on expected running time vs. exact running time later on.

ZPP-algorithms

• Assume L ∈ ZPP.
• Then we have Monte Carlo algorithms for both x ∈ L and x ∈ L .
• Given x:

• Run both algorithms once.
• If both reply probably, then output don’t know.
• Otherwise forward the (unique) yes-reply.

• Called Las Vegas algorithm
• If we rerun this algorithm exactly k -times:

• If x ∈ L (x ∈ L), probability that at least once yes, x ∈ L (yes, x ∈ L)

≥ 1 − (1 − 3/4)k = 1 − 4−k

• Expected running time if we rerun till output yes:
• In both cases expected number of reruns at most 4/3.
• So, randomized algorithm which decides L in expected polynomial

time.

• More on expected running time vs. exact running time later on.

ZPP-algorithms

• Assume L ∈ ZPP.
• Then we have Monte Carlo algorithms for both x ∈ L and x ∈ L .
• Given x:

• Run both algorithms once.
• If both reply probably, then output don’t know.
• Otherwise forward the (unique) yes-reply.

• Called Las Vegas algorithm
• If we rerun this algorithm exactly k -times:

• If x ∈ L (x ∈ L), probability that at least once yes, x ∈ L (yes, x ∈ L)

≥ 1 − (1 − 3/4)k = 1 − 4−k

• Expected running time if we rerun till output yes:
• In both cases expected number of reruns at most 4/3.
• So, randomized algorithm which decides L in expected polynomial

time.

• More on expected running time vs. exact running time later on.

ZPP-algorithms

• Assume L ∈ ZPP.
• Then we have Monte Carlo algorithms for both x ∈ L and x ∈ L .
• Given x:

• Run both algorithms once.
• If both reply probably, then output don’t know.
• Otherwise forward the (unique) yes-reply.

• Called Las Vegas algorithm
• If we rerun this algorithm exactly k -times:

• If x ∈ L (x ∈ L), probability that at least once yes, x ∈ L (yes, x ∈ L)

≥ 1 − (1 − 3/4)k = 1 − 4−k

• Expected running time if we rerun till output yes:
• In both cases expected number of reruns at most 4/3.
• So, randomized algorithm which decides L in expected polynomial

time.

• More on expected running time vs. exact running time later on.

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP

• Definitions X
• Monte Carlo and Las Vegas algorithms X
• Examples: ZEROP and perfect matchings

• Power of randomization with two-sided error: PP,BPP

ZEROP

• Given: Multivariate polynomial p(x1, . . . , xk), not necessarily
expanded, but evaluable in polynomial time.

• Wanted: Decide if p(x1, . . . , xk) is the zero polynomial.

∣∣∣∣∣∣∣∣
0 y2 xy
z 0 y
0 yz xz

∣∣∣∣∣∣∣∣ = −y2(z · xz − 0) + xy(z · yz − 0) = −xy2z2 + xy2z2 = 0

• ZEROP := “All zero polynomials evaluable polynomial time”.
• E.g. determinant: substitute values for variables, then use

Gauß-elemination.
• Not known to be in P.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let p(x1, . . . , xk) be a nonzero polynomial with each variable xi of degree
at most d. Then for M ∈ N:∣∣∣{(x1, . . . , xk) ∈ {0, 1, . . . ,M − 1}k | p(x1, . . . , xk) = 0}

∣∣∣ ≤ kdMk−1.

Let X1, . . . ,Xk be independent random variables, each uniformly
distributed on {0, 1, . . . ,M − 1}. Then for M = 4kd:

p < ZEROP⇒ Pr [p(X1, . . . ,Xk) = 0] ≤
kdMk−1

Mk
=

kd
M

=
1
4
.

• So we can decide p ∈ ZEROP in coRP if
• we can evaluate p(·) in polynomial time, and
• d is polynomial in the representation of p.

• See Arora p. 130 for work around if d is exponential
• E.g. p(x) = (. . . ((x − 1)2)2 . . .)2.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let p(x1, . . . , xk) be a nonzero polynomial with each variable xi of degree
at most d. Then for M ∈ N:∣∣∣{(x1, . . . , xk) ∈ {0, 1, . . . ,M − 1}k | p(x1, . . . , xk) = 0}

∣∣∣ ≤ kdMk−1.

Let X1, . . . ,Xk be independent random variables, each uniformly
distributed on {0, 1, . . . ,M − 1}. Then for M = 4kd:

p < ZEROP⇒ Pr [p(X1, . . . ,Xk) = 0] ≤
kdMk−1

Mk
=

kd
M

=
1
4
.

• So we can decide p ∈ ZEROP in coRP if
• we can evaluate p(·) in polynomial time, and
• d is polynomial in the representation of p.

• See Arora p. 130 for work around if d is exponential
• E.g. p(x) = (. . . ((x − 1)2)2 . . .)2.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let p(x1, . . . , xk) be a nonzero polynomial with each variable xi of degree
at most d. Then for M ∈ N:∣∣∣{(x1, . . . , xk) ∈ {0, 1, . . . ,M − 1}k | p(x1, . . . , xk) = 0}

∣∣∣ ≤ kdMk−1.

Let X1, . . . ,Xk be independent random variables, each uniformly
distributed on {0, 1, . . . ,M − 1}. Then for M = 4kd:

p < ZEROP⇒ Pr [p(X1, . . . ,Xk) = 0] ≤
kdMk−1

Mk
=

kd
M

=
1
4
.

• So we can decide p ∈ ZEROP in coRP if
• we can evaluate p(·) in polynomial time, and
• d is polynomial in the representation of p.

• See Arora p. 130 for work around if d is exponential
• E.g. p(x) = (. . . ((x − 1)2)2 . . .)2.

ZEROP

Lemma (cf. Papadimitriou p. 243)

Let p(x1, . . . , xk) be a nonzero polynomial with each variable xi of degree
at most d. Then for M ∈ N:∣∣∣{(x1, . . . , xk) ∈ {0, 1, . . . ,M − 1}k | p(x1, . . . , xk) = 0}

∣∣∣ ≤ kdMk−1.

Let X1, . . . ,Xk be independent random variables, each uniformly
distributed on {0, 1, . . . ,M − 1}. Then for M = 4kd:

p < ZEROP⇒ Pr [p(X1, . . . ,Xk) = 0] ≤
kdMk−1

Mk
=

kd
M

=
1
4
.

• So we can decide p ∈ ZEROP in coRP if
• we can evaluate p(·) in polynomial time, and
• d is polynomial in the representation of p.

• See Arora p. 130 for work around if d is exponential
• E.g. p(x) = (. . . ((x − 1)2)2 . . .)2.

Perfect Matchings in Bipartite Graphs

• Given: bipartite graph G = (U,V ,E) with

|U| = |V | = n and E ⊆ U × V .

• Wanted: M ⊆ E such that

∀(u, v), (u′, v ′) ∈ M : u , u′ ∧ v , v ′.

• Problem is known to be solvable in time O(n5) (and better).
• So it is in RP.
• Still, some “easy” randomized algorithm relying on ZEROP.

Perfect Matchings in Bipartite Graphs

• Given: bipartite graph G = (U,V ,E) with

|U| = |V | = n and E ⊆ U × V .

• Wanted: M ⊆ E such that

∀(u, v), (u′, v ′) ∈ M : u , u′ ∧ v , v ′.

• Problem is known to be solvable in time O(n5) (and better).
• So it is in RP.
• Still, some “easy” randomized algorithm relying on ZEROP.

Perfect Matchings in Bipartite Graphs

• Given: bipartite graph G = (U,V ,E) with

|U| = |V | = n and E ⊆ U × V .

• Wanted: M ⊆ E such that

∀(u, v), (u′, v ′) ∈ M : u , u′ ∧ v , v ′.

• Problem is known to be solvable in time O(n5) (and better).
• So it is in RP.

• Still, some “easy” randomized algorithm relying on ZEROP.

Perfect Matchings in Bipartite Graphs

• Given: bipartite graph G = (U,V ,E) with

|U| = |V | = n and E ⊆ U × V .

• Wanted: M ⊆ E such that

∀(u, v), (u′, v ′) ∈ M : u , u′ ∧ v , v ′.

• Problem is known to be solvable in time O(n5) (and better).
• So it is in RP.
• Still, some “easy” randomized algorithm relying on ZEROP.

Perfect Matchings in Bipartite Graphs

• For bipartite graph G = (U,V ,E) define square matrix M:

Mij =

{
xij if (ui , vj) ∈ E
0 else .

• Output:
• “has perfect matching” if det(M) < ZEROP
• “might not have perfect matching” if det(M) ∈ ZEROP

u1

u2

u3

v1

v2

v3

∣∣∣∣∣∣∣∣
 0 x1,2 x1,3

x2,1 0 x2,3

0 x3,2 0

∣∣∣∣∣∣∣∣ = −x1,3x2,1x3,2

• Relies on Leibniz formula: det M =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Mi,σ(i).

Perfect Matchings in Bipartite Graphs

• For bipartite graph G = (U,V ,E) define square matrix M:

Mij =

{
xij if (ui , vj) ∈ E
0 else .

• Output:
• “has perfect matching” if det(M) < ZEROP
• “might not have perfect matching” if det(M) ∈ ZEROP

u1

u2

u3

v1

v2

v3

∣∣∣∣∣∣∣∣
 0 x1,2 x1,3

x2,1 0 x2,3

0 x3,2 0

∣∣∣∣∣∣∣∣ = −x1,3x2,1x3,2

• Relies on Leibniz formula: det M =
∑
σ∈Sn

sgn(σ)
∏n

i=1 Mi,σ(i).

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X

• Definitions X
• Monte Carlo and Las Vegas algorithms X
• Examples: ZEROP and perfect matchings X

• Power of randomization with two-sided error: PP,BPP
• Enlarging RP by false negatives and false positives
• Comparison: NP,RP, coRP,ZPP,BPP,PP
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy

Probability of error for both x ∈ L and x < L

• RP obtained from NP by
• choosing certificate u uniformly at random
• requiring a fixed fraction of accept-certificates if x ∈ L

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] = 0.

• RP-algorithms can only make errors for x ∈ L .

• By allowing both errors for both cases, can we obtain a class that is
• larger than RP,
• but still more realistic than NP?

• Assume we change the definition of RP to:

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L : Pr [RM,x] ≤ 1/4
• False positives: If x < L : Pr [AM,x] < 3/4
• Outputs: probably, x ∈ L and probably, x < L

Probability of error for both x ∈ L and x < L

• RP obtained from NP by
• choosing certificate u uniformly at random
• requiring a fixed fraction of accept-certificates if x ∈ L

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] = 0.

• RP-algorithms can only make errors for x ∈ L .
• By allowing both errors for both cases, can we obtain a class that is

• larger than RP,
• but still more realistic than NP?

• Assume we change the definition of RP to:

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L : Pr [RM,x] ≤ 1/4
• False positives: If x < L : Pr [AM,x] < 3/4
• Outputs: probably, x ∈ L and probably, x < L

Probability of error for both x ∈ L and x < L

• RP obtained from NP by
• choosing certificate u uniformly at random
• requiring a fixed fraction of accept-certificates if x ∈ L

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] = 0.

• RP-algorithms can only make errors for x ∈ L .
• By allowing both errors for both cases, can we obtain a class that is

• larger than RP,
• but still more realistic than NP?

• Assume we change the definition of RP to:

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L : Pr [RM,x] ≤ 1/4
• False positives: If x < L : Pr [AM,x] < 3/4
• Outputs: probably, x ∈ L and probably, x < L

Probabilistic Polynomial Time (PP)

Definition (PP)

L ∈ PP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• RP ⊆ PP ⊆ EXP
• One can show:

• May replace ≥ by >.
• May replace 3/4 by 1/2.
• PP = coPP

• PP: “x ∈ L iff x is accepted by a majority”
• If x < L , then x is not accepted by a majority (, a majority rejects x!)

• Next: PP is at least as untractable as NP.

Probabilistic Polynomial Time (PP)

Definition (PP)

L ∈ PP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• RP ⊆ PP ⊆ EXP

• One can show:
• May replace ≥ by >.
• May replace 3/4 by 1/2.
• PP = coPP

• PP: “x ∈ L iff x is accepted by a majority”
• If x < L , then x is not accepted by a majority (, a majority rejects x!)

• Next: PP is at least as untractable as NP.

Probabilistic Polynomial Time (PP)

Definition (PP)

L ∈ PP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• RP ⊆ PP ⊆ EXP
• One can show:

• May replace ≥ by >.
• May replace 3/4 by 1/2.
• PP = coPP

• PP: “x ∈ L iff x is accepted by a majority”
• If x < L , then x is not accepted by a majority (, a majority rejects x!)

• Next: PP is at least as untractable as NP.

Probabilistic Polynomial Time (PP)

Definition (PP)

L ∈ PP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• RP ⊆ PP ⊆ EXP
• One can show:

• May replace ≥ by >.
• May replace 3/4 by 1/2.
• PP = coPP

• PP: “x ∈ L iff x is accepted by a majority”
• If x < L , then x is not accepted by a majority (, a majority rejects x!)

• Next: PP is at least as untractable as NP.

Probabilistic Polynomial Time (PP)

Definition (PP)

L ∈ PP if there exists a polynomial p : N→ N and a polynomial-time TM
M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇔ Pr [AM,x] ≥ 3/4.

• RP ⊆ PP ⊆ EXP
• One can show:

• May replace ≥ by >.
• May replace 3/4 by 1/2.
• PP = coPP

• PP: “x ∈ L iff x is accepted by a majority”
• If x < L , then x is not accepted by a majority (, a majority rejects x!)

• Next: PP is at least as untractable as NP.

NP ⊆ PP

Theorem

NP ⊆ PP

• Assume TM M(x, u) for L ∈ NP uses certificates u of length p(|x |).
• Consider TM N(x,w) with |w | = p(|x |) + 2:

• If w = 00u, define N(x,w) := M(x, u).
• Else N(x,w) = 1 iff w , 11 . . . 1.

• Choose w uniformly on {0, 1}p(|x |)+2 at random:
• If x ∈ L : Pr [AN,x] ≥

3/4 − 2−p(|x |)−2 + 2−p(|x |)−2 = 3/4

• If x < L : Pr [AN,x] =

3/4 − 2−p(|x |)−2 < 3/4

NP ⊆ PP

Theorem

NP ⊆ PP

• Assume TM M(x, u) for L ∈ NP uses certificates u of length p(|x |).
• Consider TM N(x,w) with |w | = p(|x |) + 2:

• If w = 00u, define N(x,w) := M(x, u).
• Else N(x,w) = 1 iff w , 11 . . . 1.

• Choose w uniformly on {0, 1}p(|x |)+2 at random:
• If x ∈ L : Pr [AN,x] ≥

3/4 − 2−p(|x |)−2 + 2−p(|x |)−2 = 3/4

• If x < L : Pr [AN,x] =

3/4 − 2−p(|x |)−2 < 3/4

NP ⊆ PP

Theorem

NP ⊆ PP

• Assume TM M(x, u) for L ∈ NP uses certificates u of length p(|x |).
• Consider TM N(x,w) with |w | = p(|x |) + 2:

• If w = 00u, define N(x,w) := M(x, u).
• Else N(x,w) = 1 iff w , 11 . . . 1.

• Choose w uniformly on {0, 1}p(|x |)+2 at random:
• If x ∈ L : Pr [AN,x] ≥ 3/4 − 2−p(|x |)−2 + 2−p(|x |)−2 = 3/4
• If x < L : Pr [AN,x] =

3/4 − 2−p(|x |)−2 < 3/4

NP ⊆ PP

Theorem

NP ⊆ PP

• Assume TM M(x, u) for L ∈ NP uses certificates u of length p(|x |).
• Consider TM N(x,w) with |w | = p(|x |) + 2:

• If w = 00u, define N(x,w) := M(x, u).
• Else N(x,w) = 1 iff w , 11 . . . 1.

• Choose w uniformly on {0, 1}p(|x |)+2 at random:
• If x ∈ L : Pr [AN,x] ≥ 3/4 − 2−p(|x |)−2 + 2−p(|x |)−2 = 3/4
• If x < L : Pr [AN,x] = 3/4 − 2−p(|x |)−2 < 3/4

“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] < 3/4

by adding enough accept-certificates, i.e.,

• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P

“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] < 3/4

by adding enough accept-certificates, i.e.,

• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P

“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] < 3/4

by adding enough accept-certificates, i.e.,
• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P

“Bounded probability of error”-P (BPP)

• By the previous result:
• PP does not seem to capture realistic computation.

• Proof relied on the dependency of the two error bounds:
• We traded one-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 2−p(|x |) and x < L ⇒ Pr [AM,x] = 0

for two-sided error probability

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [AM,x] < 3/4

by adding enough accept-certificates, i.e.,
• we increased the probability for false positives,
• while decreasing the probability for false negatives.

• Possible fix:
• Require bounds on both error probabilities.
• “Bounded error probability of error”-P

BPP

Definition (BPP)

L ∈ BPP if there exists a polynomial p : N→ N and a polynomial-time
TM M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [RM,x] ≥ 3/4.

• RP ⊆ BPP = coBPP ⊆ PP
• Reminder: if L ∈ PP, then x < L ⇒ Pr [AM,x] < 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L , then Pr [RM,x] ≤ 1/4.
• False positives: If x < L , then Pr [AM,x] ≤ 1/4.
• Outputs: probably, x ∈ L and probably, x < L .
• Error reduction to 2−n by rerunning (later).

• It is unknown whether BPP = NP or even BPP = P!
• Under some non-trivial but “very reasonable” assumptions: BPP = P!

(Arora p. 402)
• BPP = “most comprehensive, yet plausible notion of realistic

computation” (Papadimitriou p. 259)

BPP

Definition (BPP)

L ∈ BPP if there exists a polynomial p : N→ N and a polynomial-time
TM M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [RM,x] ≥ 3/4.

• RP ⊆ BPP = coBPP ⊆ PP
• Reminder: if L ∈ PP, then x < L ⇒ Pr [AM,x] < 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L , then Pr [RM,x] ≤ 1/4.
• False positives: If x < L , then Pr [AM,x] ≤ 1/4.
• Outputs: probably, x ∈ L and probably, x < L .
• Error reduction to 2−n by rerunning (later).

• It is unknown whether BPP = NP or even BPP = P!
• Under some non-trivial but “very reasonable” assumptions: BPP = P!

(Arora p. 402)
• BPP = “most comprehensive, yet plausible notion of realistic

computation” (Papadimitriou p. 259)

BPP

Definition (BPP)

L ∈ BPP if there exists a polynomial p : N→ N and a polynomial-time
TM M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [RM,x] ≥ 3/4.

• RP ⊆ BPP = coBPP ⊆ PP
• Reminder: if L ∈ PP, then x < L ⇒ Pr [AM,x] < 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L , then Pr [RM,x] ≤ 1/4.
• False positives: If x < L , then Pr [AM,x] ≤ 1/4.
• Outputs: probably, x ∈ L and probably, x < L .
• Error reduction to 2−n by rerunning (later).

• It is unknown whether BPP = NP or even BPP = P!
• Under some non-trivial but “very reasonable” assumptions: BPP = P!

(Arora p. 402)

• BPP = “most comprehensive, yet plausible notion of realistic
computation” (Papadimitriou p. 259)

BPP

Definition (BPP)

L ∈ BPP if there exists a polynomial p : N→ N and a polynomial-time
TM M(x, u) using certificates u of length |u| = p(|x |) such that for every
x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [RM,x] ≥ 3/4.

• RP ⊆ BPP = coBPP ⊆ PP
• Reminder: if L ∈ PP, then x < L ⇒ Pr [AM,x] < 3/4.

• Two-sided error probabilities:
• False negatives: If x ∈ L , then Pr [RM,x] ≤ 1/4.
• False positives: If x < L , then Pr [AM,x] ≤ 1/4.
• Outputs: probably, x ∈ L and probably, x < L .
• Error reduction to 2−n by rerunning (later).

• It is unknown whether BPP = NP or even BPP = P!
• Under some non-trivial but “very reasonable” assumptions: BPP = P!

(Arora p. 402)
• BPP = “most comprehensive, yet plausible notion of realistic

computation” (Papadimitriou p. 259)

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PP
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ NP:
• if x ∈ L : at least one
• if x < L : all

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ NP:
• if x ∈ L : at least one
• if x < L : all

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ RP:
• if x ∈ L : at least 75%
• if x < L : all

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ RP:
• if x ∈ L : at least 75%
• if x < L : all

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ coRP:
• if x ∈ L : all
• if x < L : at least 75%

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ coRP:
• if x ∈ L : all
• if x < L : at least 75%

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ ZPP:
• if x ∈ L : no
• if x < L : no

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ ZPP:
• if x ∈ L : no
• if x < L : no

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ BPP:
• if x ∈ L : at least 75%
• if x < L : at least 75%

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ BPP:
• if x ∈ L : at least 75%
• if x < L : at least 75%

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ PP:
• if x ∈ L : at least 75%
• if x < L : less than 75%

NP vs. RP vs. coRP vs. ZPP vs. BPP vs. PP

u0 u1 u2 u3 u4 u5 u6 u7

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• L ∈ PP:
• if x ∈ L : at least 75%
• if x < L : less than 75%

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PP X
• Probabilistic Turing machines
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ RP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 1] = 0.

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ coRP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] = 1 and x < L ⇒ Pr [M(x) = 1] ≤ 1/4.

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ BPP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 1] ≤ 1/4.

Probabilistic Turing Machines

Definition (PTM)

We obtain from an NDTM M = (Γ,Q , δ1, δ2) a probabilistic TM (PTM) by
choosing in every computation step the transition function uniformly at
random, i.e., any given run of M on x of length exactly l occurs with
probability 2−l .
A PTM runs in time T(n) if the underlying NDTM runs in time T(n), i.e., if
M halts on x within at most T(|x |) steps regardless of the random choices
it makes.

Corollary

L ∈ PP iff there is a poly-time PTM M s.t. for all x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 1] < 3/4.

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running time
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy

Expected vs. Exact Running Time

• Recall: if L ∈ ZPP
• RP-algorithms for L and L .
• Rerun both algorithms on x until one outputs yes.
• This decides L in expected polynomial time.
• But might run infinitely long in the worst case.

• So, is expected time more powerful than exact time?

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let TM,x be the random variable that counts the steps of a
computation of M on x, i.e., Pr [TM,x ≤ t] is the probability that M halts on
x within at most t steps.
We say that M runs in expected time T(n) if E [TM,x] ≤ T(|x |) for every x.

• Possibly infinite runs.
• So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial T : N→ N and a PTM
M such that for every x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 0] ≥ 3/4

and E [TM,x] ≤ T(|x |).

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let TM,x be the random variable that counts the steps of a
computation of M on x, i.e., Pr [TM,x ≤ t] is the probability that M halts on
x within at most t steps.
We say that M runs in expected time T(n) if E [TM,x] ≤ T(|x |) for every x.

• Possibly infinite runs.

• So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial T : N→ N and a PTM
M such that for every x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 0] ≥ 3/4

and E [TM,x] ≤ T(|x |).

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let TM,x be the random variable that counts the steps of a
computation of M on x, i.e., Pr [TM,x ≤ t] is the probability that M halts on
x within at most t steps.
We say that M runs in expected time T(n) if E [TM,x] ≤ T(|x |) for every x.

• Possibly infinite runs.
• So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial T : N→ N and a PTM
M such that for every x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 0] ≥ 3/4

and E [TM,x] ≤ T(|x |).

Expected Running Time

Definition (Expected running time of a PTM)

For a PTM M let TM,x be the random variable that counts the steps of a
computation of M on x, i.e., Pr [TM,x ≤ t] is the probability that M halts on
x within at most t steps.
We say that M runs in expected time T(n) if E [TM,x] ≤ T(|x |) for every x.

• Possibly infinite runs.
• So, certificates would need to be unbounded.

Definition (BPeP)

A language L is in BPeP if there is a polynomial T : N→ N and a PTM
M such that for every x ∈ {0, 1}∗:

x ∈ L ⇒ Pr [M(x) = 1] ≥ 3/4 and x < L ⇒ Pr [M(x) = 0] ≥ 3/4

and E [TM,x] ≤ T(|x |).

Expected Running Time

• Assume L ∈ BPeP.
• PTM M deciding L within expected running time T(n).

• Probability that M does more than k steps on input x:

Pr [TM,x ≥ k] ≤
E [TM,x]

k
≤

T(|x |)
k

by Markov’s inequality.
• So, for k = 10T(|x |) (polynomial in |x |):

Pr [TM,x ≥ 10T(|x |)] ≤ 0.1

for every input x.

Expected Running Time

• Assume L ∈ BPeP.
• PTM M deciding L within expected running time T(n).

• Probability that M does more than k steps on input x:

Pr [TM,x ≥ k] ≤
E [TM,x]

k
≤

T(|x |)
k

by Markov’s inequality.

• So, for k = 10T(|x |) (polynomial in |x |):

Pr [TM,x ≥ 10T(|x |)] ≤ 0.1

for every input x.

Expected Running Time

• Assume L ∈ BPeP.
• PTM M deciding L within expected running time T(n).

• Probability that M does more than k steps on input x:

Pr [TM,x ≥ k] ≤
E [TM,x]

k
≤

T(|x |)
k

by Markov’s inequality.
• So, for k = 10T(|x |) (polynomial in |x |):

Pr [TM,x ≥ 10T(|x |)] ≤ 0.1

for every input x.

Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts:
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸ ︷︷ ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸ ︷︷ ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.

Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.

• Error probabilities:
• Assume x ∈ L .
• If simulation halts:
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸ ︷︷ ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸ ︷︷ ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.

Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts:
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸ ︷︷ ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸ ︷︷ ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.

Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise:

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸ ︷︷ ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸ ︷︷ ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.

Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise: = 1/2

• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸ ︷︷ ︸
≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸ ︷︷ ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.

Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise: = 1/2
• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸ ︷︷ ︸

≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸ ︷︷ ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.

Expected Running Time

• New algorithm M̃:
• Simulate M for at most 10T(|x |) steps.
• If simulation termiantes, forward reply of M.
• Otherwise, choose reply uniformly at random.

• Runs in (exact) polynomial time.
• Error probabilities:

• Assume x ∈ L .
• If simulation halts: ≤ 1/4
• Otherwise: = 1/2
• In total: 1/4 ·Pr [TM,x ≤ 10T(|x |)]︸ ︷︷ ︸

≤1

+1/2 · (1 − Pr [TM,x ≤ 10T(|x |)])︸ ︷︷ ︸
≤0.1

≤ 0.3

Lemma

BPP = BPeP

Lemma
L ∈ ZPP iff L is decided by some PTM in expected polynomial time.

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPP
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy

Error reduction

• Consider: L ∈ RP:
• Probability for error after r reruns:
• if x < L : = 0
• if x ∈ L : ≤ 4−r , i.e., r-times probably, x < L .

• Similarly for L ∈ coRP and L ∈ ZPP.
• What if L ∈ BPP?

• We cannot wait for a yes
• Instead use the majority.

Error reduction

• Consider: L ∈ RP:
• Probability for error after r reruns:
• if x < L : = 0
• if x ∈ L : ≤ 4−r , i.e., r-times probably, x < L .

• Similarly for L ∈ coRP and L ∈ ZPP.

• What if L ∈ BPP?
• We cannot wait for a yes
• Instead use the majority.

Error reduction

• Consider: L ∈ RP:
• Probability for error after r reruns:
• if x < L : = 0
• if x ∈ L : ≤ 4−r , i.e., r-times probably, x < L .

• Similarly for L ∈ coRP and L ∈ ZPP.
• What if L ∈ BPP?

• We cannot wait for a yes
• Instead use the majority.

Error reduction for BPP

Definition (BPP(f))

Let f : N→ Q be a function.
L ∈ BPP(f) if there exists a polynomial p : N→ N and a polynomial-time
TM M such that for every x ∈ {0, 1}∗

x ∈ L ⇒ Pr [AM,x] ≥ f(|x |) and x < L ⇒ Pr [RM,x] ≥ f(|x |).

Theorem (Error reduction for BPP)

For any c > 0:
BPP = BPP(1/2 + n−c)

• The longer the input, the less dominant the “majority” has to be.

Error reduction for BPP (Proof)

• Assume L ∈ BPP, and
• Choose any c > 0.

• There exists certainly an n0 s.t. for all n ≥ n0:

1/2 + n−c ≤ 3/4.

• So: L ∩ {0, 1}≥n0 ∈ BPP(1/2 + n−c).
• Thus, BPP(1/2 + n−c)-algorithm for L :

• If |x | < n0, decide x ∈ L in P (error prob. = 0)
• Else run BPP-algorithm (error prob. ≤ 1/4)

Error reduction for BPP (Proof)

• Assume L ∈ BPP, and
• Choose any c > 0.
• There exists certainly an n0 s.t. for all n ≥ n0:

1/2 + n−c ≤ 3/4.

• So: L ∩ {0, 1}≥n0 ∈ BPP(1/2 + n−c).
• Thus, BPP(1/2 + n−c)-algorithm for L :

• If |x | < n0, decide x ∈ L in P (error prob. = 0)
• Else run BPP-algorithm (error prob. ≤ 1/4)

Error reduction for BPP (Proof)

• Assume L ∈ BPP, and
• Choose any c > 0.
• There exists certainly an n0 s.t. for all n ≥ n0:

1/2 + n−c ≤ 3/4.

• So: L ∩ {0, 1}≥n0 ∈ BPP(1/2 + n−c).

• Thus, BPP(1/2 + n−c)-algorithm for L :
• If |x | < n0, decide x ∈ L in P (error prob. = 0)
• Else run BPP-algorithm (error prob. ≤ 1/4)

Error reduction for BPP (Proof)

• Assume L ∈ BPP, and
• Choose any c > 0.
• There exists certainly an n0 s.t. for all n ≥ n0:

1/2 + n−c ≤ 3/4.

• So: L ∩ {0, 1}≥n0 ∈ BPP(1/2 + n−c).
• Thus, BPP(1/2 + n−c)-algorithm for L :

• If |x | < n0, decide x ∈ L in P (error prob. = 0)
• Else run BPP-algorithm (error prob. ≤ 1/4)

Error reduction for BPP (Proof)

• Let L ∈ BPP(1/2 + n−c) for some c > 0.

• Run 1/2 + n−c-algorithm r-times on input x:
• Outputs: y = y1y2y3 . . . yr

• with yi ∈ {0, 1} and yi = 1 if output probably, x ∈ L
• Y1 =

∑r
i=1 yi number of 1s

• Y0 = r − Y1 number of 0s

• Probability of yi = 1 if x ∈ L , resp. yi = 0 if x < L :

x ∈ L : Pr [yi = 1] ≥ 1/2+|x |−c resp. x < L : Pr [yi = 0] ≥ 1/2+|x |−c

(yi indepedent, Bernoulli distributed RVs)
• Expected number of 1s for x ∈ L , resp. of 0s if x < L :

x ∈ L : E [Y1] ≥ r/2 + r |x |−c resp. x < L : E [Y0] ≥ r/2 + r |x |−c

• Assume r = |x |c+d for some d ∈ N:

x ∈ L : E [Y1 − Y0] ≥ 2|x |d resp. x < L : E [Y0 − Y1] ≥ 2|x |d

i.e., expect significant majority in favor of correct answer.

Error reduction for BPP (Proof)

• Let L ∈ BPP(1/2 + n−c) for some c > 0.
• Run 1/2 + n−c-algorithm r-times on input x:

• Outputs: y = y1y2y3 . . . yr

• with yi ∈ {0, 1} and yi = 1 if output probably, x ∈ L
• Y1 =

∑r
i=1 yi number of 1s

• Y0 = r − Y1 number of 0s

• Probability of yi = 1 if x ∈ L , resp. yi = 0 if x < L :

x ∈ L : Pr [yi = 1] ≥ 1/2+|x |−c resp. x < L : Pr [yi = 0] ≥ 1/2+|x |−c

(yi indepedent, Bernoulli distributed RVs)
• Expected number of 1s for x ∈ L , resp. of 0s if x < L :

x ∈ L : E [Y1] ≥ r/2 + r |x |−c resp. x < L : E [Y0] ≥ r/2 + r |x |−c

• Assume r = |x |c+d for some d ∈ N:

x ∈ L : E [Y1 − Y0] ≥ 2|x |d resp. x < L : E [Y0 − Y1] ≥ 2|x |d

i.e., expect significant majority in favor of correct answer.

Error reduction for BPP (Proof)

• Let L ∈ BPP(1/2 + n−c) for some c > 0.
• Run 1/2 + n−c-algorithm r-times on input x:

• Outputs: y = y1y2y3 . . . yr

• with yi ∈ {0, 1} and yi = 1 if output probably, x ∈ L
• Y1 =

∑r
i=1 yi number of 1s

• Y0 = r − Y1 number of 0s

• Probability of yi = 1 if x ∈ L , resp. yi = 0 if x < L :

x ∈ L : Pr [yi = 1] ≥ 1/2+|x |−c resp. x < L : Pr [yi = 0] ≥ 1/2+|x |−c

(yi indepedent, Bernoulli distributed RVs)

• Expected number of 1s for x ∈ L , resp. of 0s if x < L :

x ∈ L : E [Y1] ≥ r/2 + r |x |−c resp. x < L : E [Y0] ≥ r/2 + r |x |−c

• Assume r = |x |c+d for some d ∈ N:

x ∈ L : E [Y1 − Y0] ≥ 2|x |d resp. x < L : E [Y0 − Y1] ≥ 2|x |d

i.e., expect significant majority in favor of correct answer.

Error reduction for BPP (Proof)

• Let L ∈ BPP(1/2 + n−c) for some c > 0.
• Run 1/2 + n−c-algorithm r-times on input x:

• Outputs: y = y1y2y3 . . . yr

• with yi ∈ {0, 1} and yi = 1 if output probably, x ∈ L
• Y1 =

∑r
i=1 yi number of 1s

• Y0 = r − Y1 number of 0s

• Probability of yi = 1 if x ∈ L , resp. yi = 0 if x < L :

x ∈ L : Pr [yi = 1] ≥ 1/2+|x |−c resp. x < L : Pr [yi = 0] ≥ 1/2+|x |−c

(yi indepedent, Bernoulli distributed RVs)
• Expected number of 1s for x ∈ L , resp. of 0s if x < L :

x ∈ L : E [Y1] ≥ r/2 + r |x |−c resp. x < L : E [Y0] ≥ r/2 + r |x |−c

• Assume r = |x |c+d for some d ∈ N:

x ∈ L : E [Y1 − Y0] ≥ 2|x |d resp. x < L : E [Y0 − Y1] ≥ 2|x |d

i.e., expect significant majority in favor of correct answer.

Error reduction for BPP (Proof)

• Let L ∈ BPP(1/2 + n−c) for some c > 0.
• Run 1/2 + n−c-algorithm r-times on input x:

• Outputs: y = y1y2y3 . . . yr

• with yi ∈ {0, 1} and yi = 1 if output probably, x ∈ L
• Y1 =

∑r
i=1 yi number of 1s

• Y0 = r − Y1 number of 0s

• Probability of yi = 1 if x ∈ L , resp. yi = 0 if x < L :

x ∈ L : Pr [yi = 1] ≥ 1/2+|x |−c resp. x < L : Pr [yi = 0] ≥ 1/2+|x |−c

(yi indepedent, Bernoulli distributed RVs)
• Expected number of 1s for x ∈ L , resp. of 0s if x < L :

x ∈ L : E [Y1] ≥ r/2 + r |x |−c resp. x < L : E [Y0] ≥ r/2 + r |x |−c

• Assume r = |x |c+d for some d ∈ N:

x ∈ L : E [Y1 − Y0] ≥ 2|x |d resp. x < L : E [Y0 − Y1] ≥ 2|x |d

i.e., expect significant majority in favor of correct answer.

Error reduction for BPP (Proof)

• Idea: let majority decide, i.e., output x ∈ L iff Y1 > Y0.

• Assume x ∈ L in the following
• Case x < L symmetric:
• set zi := 1 − yi and consider Y0 instead of Y1

• Probability that “majority” wrongly says x < L :

Pr [Y1 ≤ Y0] = Pr [Y1 ≤ r/2]

• Chernoff bound: for X ∼ Bin(n; p) with µ := E [X] and δ ∈ (0, 1)

Pr [X ≤ (1 − δ)µ] ≤ e−µδ
2/2

• Thus:

Pr [Y1 ≤ r/2] = Pr [Y1 ≤ (1 − (1 − r/(2µ)))µ] ≤ e−µδ
2/2

as long as δ := 1 − r/(2µ) ∈ (0, 1).

Error reduction for BPP (Proof)

• Idea: let majority decide, i.e., output x ∈ L iff Y1 > Y0.
• Assume x ∈ L in the following

• Case x < L symmetric:
• set zi := 1 − yi and consider Y0 instead of Y1

• Probability that “majority” wrongly says x < L :

Pr [Y1 ≤ Y0] = Pr [Y1 ≤ r/2]

• Chernoff bound: for X ∼ Bin(n; p) with µ := E [X] and δ ∈ (0, 1)

Pr [X ≤ (1 − δ)µ] ≤ e−µδ
2/2

• Thus:

Pr [Y1 ≤ r/2] = Pr [Y1 ≤ (1 − (1 − r/(2µ)))µ] ≤ e−µδ
2/2

as long as δ := 1 − r/(2µ) ∈ (0, 1).

Error reduction for BPP (Proof)

• Idea: let majority decide, i.e., output x ∈ L iff Y1 > Y0.
• Assume x ∈ L in the following

• Case x < L symmetric:
• set zi := 1 − yi and consider Y0 instead of Y1

• Probability that “majority” wrongly says x < L :

Pr [Y1 ≤ Y0] = Pr [Y1 ≤ r/2]

• Chernoff bound: for X ∼ Bin(n; p) with µ := E [X] and δ ∈ (0, 1)

Pr [X ≤ (1 − δ)µ] ≤ e−µδ
2/2

• Thus:

Pr [Y1 ≤ r/2] = Pr [Y1 ≤ (1 − (1 − r/(2µ)))µ] ≤ e−µδ
2/2

as long as δ := 1 − r/(2µ) ∈ (0, 1).

Error reduction for BPP (Proof)

• Idea: let majority decide, i.e., output x ∈ L iff Y1 > Y0.
• Assume x ∈ L in the following

• Case x < L symmetric:
• set zi := 1 − yi and consider Y0 instead of Y1

• Probability that “majority” wrongly says x < L :

Pr [Y1 ≤ Y0] = Pr [Y1 ≤ r/2]

• Chernoff bound: for X ∼ Bin(n; p) with µ := E [X] and δ ∈ (0, 1)

Pr [X ≤ (1 − δ)µ] ≤ e−µδ
2/2

• Thus:

Pr [Y1 ≤ r/2] = Pr [Y1 ≤ (1 − (1 − r/(2µ)))µ] ≤ e−µδ
2/2

as long as δ := 1 − r/(2µ) ∈ (0, 1).

Error reduction for BPP (Proof)

• Idea: let majority decide, i.e., output x ∈ L iff Y1 > Y0.
• Assume x ∈ L in the following

• Case x < L symmetric:
• set zi := 1 − yi and consider Y0 instead of Y1

• Probability that “majority” wrongly says x < L :

Pr [Y1 ≤ Y0] = Pr [Y1 ≤ r/2]

• Chernoff bound: for X ∼ Bin(n; p) with µ := E [X] and δ ∈ (0, 1)

Pr [X ≤ (1 − δ)µ] ≤ e−µδ
2/2

• Thus:

Pr [Y1 ≤ r/2] = Pr [Y1 ≤ (1 − (1 − r/(2µ)))µ] ≤ e−µδ
2/2

as long as δ := 1 − r/(2µ) ∈ (0, 1).

Error reduction for BPP (Proof)

• Bounds on δ = 1 − r/(2µ):

0 < δ < 1⇔ 0 < r/2 < µ⇐ r/2 + r |x |−c ≤ µ

• Thus, choose r s.t.

Pr [Y1 ≤ r/2] ≤ e−µδ
2/2 ≤ 1/4.

i.e.,
µδ2 ≥ 2 loge 4.

• With
µ ≥ r/2 + r |x |−c

we obtain:

µδ2 = (µ−r/2)(1−(r/2)/µ) ≥ r |x |−c
(
1 −

r/2
r/2 + r |x |−c

)
= r ·

|x |−2c

1/2 + |x |−c

• So, choose r ≥ (loge 4) · (|x |2c + 2|x |c).

Error reduction for BPP (Proof)

• For x < L we obtain analogously:

Pr [Y0 ≤ Y1] ≤ 1/4 if r ≥ (loge 4) · (|x |2c + 2|x |c).

• So, a polynomial number of rounds suffices to reduce error
probability to at most 1/4.

• Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:
BPP = BPP(1 − 2−nd

)

• Ex.: Show the theorem.

Error reduction for BPP (Proof)

• For x < L we obtain analogously:

Pr [Y0 ≤ Y1] ≤ 1/4 if r ≥ (loge 4) · (|x |2c + 2|x |c).

• So, a polynomial number of rounds suffices to reduce error
probability to at most 1/4.

• Proof also yields:

Theorem (Error reduction for BPP)

For any d > 0:
BPP = BPP(1 − 2−nd

)

• Ex.: Show the theorem.

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPPX
• Some kind of derandomization for BPP
• BPP in the polynomial hierarchy

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.

• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤ 4−n

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤ 4−n

• Pr
[⋃
|x |=n Bx

]
≤

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤ 4−n

• Pr
[⋃
|x |=n Bx

]
≤

∑
|x |=n Pr [Bx] ≤ 2n · 4−n = 2−n

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤ 4−n

• Pr
[⋃
|x |=n Bx

]
≤

∑
|x |=n Pr [Bx] ≤ 2n · 4−n = 2−n

• Pr
[⋂
|x |=n Bx

]
≥

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤ 4−n

• Pr
[⋃
|x |=n Bx

]
≤

∑
|x |=n Pr [Bx] ≤ 2n · 4−n = 2−n

• Pr
[⋂
|x |=n Bx

]
≥ 1 − 2−n > 0

• Seems unlikely for NP.

Some Kind of Derandomization

Theorem
Let L ∈ BPP be decided by a poly-time TM M(x, u) using certificates of
poly-length p(n).
Then for every n ∈ N there exists a certificate un s.t. for all x with |x | = n:

x ∈ L iff M(x, un) = 1.

• Error reduction: BPP = BPP(1 − 4−n)

• For a given n let choose u ∈ {0, 1}p(n) uniformly at random.
• Let Bx be the event of bad certificates for x:

Bx := {u ∈ {0, 1}p(|x |) | x ∈ L ⇔ M(x, u) = 0}.

• Pr [Bx] ≤ 4−n

• Pr
[⋃
|x |=n Bx

]
≤

∑
|x |=n Pr [Bx] ≤ 2n · 4−n = 2−n

• Pr
[⋂
|x |=n Bx

]
≥ 1 − 2−n > 0

• Seems unlikely for NP.

Agenda

• Motivation: From NP to a more realistic class by randomization X
• Randomized poly-time with one-sided error: RP, coRP,ZPP X
• Power of randomization with two-sided error: PP,BPP

• Enlarging RP by false negatives and false positives X
• Comparison: NP,RP, coRP,ZPP,BPP,PPX
• Probabilistic Turing machinesX
• Expected running timeX
• Error reduction for BPPX
• Some kind of derandomization for BPPX
• BPP in the polynomial hierarchy

BPP in the Polynomial Hierarchy PH

Theorem

BPP ⊆ Σp
2 ∩ Π

p
2

• Reminder:
• Definition of L ∈ Σp

2 :

x ∈ L iff ∃u ∈ {0, 1}p(|x |)∀v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• Definition of L ∈ Πp
2 :

x ∈ L iff ∀u ∈ {0, 1}p(|x |)∃v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• As BPP = coBPP it suffices to show BPP ⊆ Σp
2 :

L ∈ BPP⇒ L ∈ BPP⇒ L ∈ Σp
2 ⇒ L ∈ Πp

2

BPP in the Polynomial Hierarchy PH

Theorem

BPP ⊆ Σp
2 ∩ Π

p
2

• Reminder:
• Definition of L ∈ Σp

2 :

x ∈ L iff ∃u ∈ {0, 1}p(|x |)∀v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• Definition of L ∈ Πp
2 :

x ∈ L iff ∀u ∈ {0, 1}p(|x |)∃v ∈ {0, 1}p(|x |) : M(x, u, v) = 1.

• As BPP = coBPP it suffices to show BPP ⊆ Σp
2 :

L ∈ BPP⇒ L ∈ BPP⇒ L ∈ Σp
2 ⇒ L ∈ Πp

2

BPP in the Polynomial Hierarchy PH

• We use again that BPP = BPP(1 − 4−n).
• Let p(·) be the polynomial bounding the certificate length.
• Recall AM,x : “accept-certificates”

AM,x := {u ∈ {0, 1}p(|x |) | M(x, u) = 1}

• Then

x ∈ L ⇒ |AM,x | ≥ (1 − 4−|x |)2p(|x |) and x < L ⇒ |AM,x | ≤ 4−n · 2p(|x |)

• Need a formula to distinguish the two cases.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume |x | = 1 and p(|x |) = 3,
• i.e., possible certificates in {0, 1}3.
• If x ∈ L , then |AM,x | ≥ 3/4 · 23 = 6.
• If x < L , then |AM,x | ≤ 1/4 · 23 = 2.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x < L , i.e., |AM,x | ≤ 1/4 · 8 = 2

• Choose any u1, u2 ∈ {0, 1}3.
• By chance, we might hit AM,x .
• Claim: But there is some r ∈ {0, 1}3 s.t.

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x = ∅.

(⊕: bitwise xor)

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x < L , i.e., |AM,x | ≤ 1/4 · 8 = 2
• Choose any u1, u2 ∈ {0, 1}3.

• By chance, we might hit AM,x .
• Claim: But there is some r ∈ {0, 1}3 s.t.

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x = ∅.

(⊕: bitwise xor)

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x < L , i.e., |AM,x | ≤ 1/4 · 8 = 2
• Choose any u1, u2 ∈ {0, 1}3.
• By chance, we might hit AM,x .

• Claim: But there is some r ∈ {0, 1}3 s.t.

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x = ∅.

(⊕: bitwise xor)

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x < L , i.e., |AM,x | ≤ 1/4 · 8 = 2
• Choose any u1, u2 ∈ {0, 1}3.
• By chance, we might hit AM,x .
• Claim: But there is some r ∈ {0, 1}3 s.t.

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x = ∅.

(⊕: bitwise xor)

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Note:
ui ⊕ r ∈ AM,x iff r ∈ AM,x ⊕ ui .

• So, choose

r ∈ AM,x ⊕ u1 ∪ AM,x ⊕ u2 = {000, 011} ∪ {101, 110}.

• E.g. r = 001.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Note:
ui ⊕ r ∈ AM,x iff r ∈ AM,x ⊕ ui .

• So, choose

r ∈ AM,x ⊕ u1 ∪ AM,x ⊕ u2 = {000, 011} ∪ {101, 110}.

• E.g. r = 001.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Note:
ui ⊕ r ∈ AM,x iff r ∈ AM,x ⊕ ui .

• So, choose

r ∈ AM,x ⊕ u1 ∪ AM,x ⊕ u2 = {000, 011} ∪ {101, 110}.

• E.g. r = 001.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Note:
ui ⊕ r ∈ AM,x iff r ∈ AM,x ⊕ ui .

• So, choose

r ∈ AM,x ⊕ u1 ∪ AM,x ⊕ u2 = {000, 011} ∪ {101, 110}.

• E.g. r = 001.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x ∈ L , i.e., |AM,x | ≥ 6.

• Claim: We can choose u1, u2 s.t. for any r ∈ {0, 1}3

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x , ∅.

• Note: this is exactly the negation of the previous claim.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Assume x ∈ L , i.e., |AM,x | ≥ 6.
• Claim: We can choose u1, u2 s.t. for any r ∈ {0, 1}3

{u1 ⊕ r , u2 ⊕ r} ∩ AM,x , ∅.

• Note: this is exactly the negation of the previous claim.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• E.g., take u1 = 000.

• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.
• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .
• E.g., u2 = 011.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• E.g., take u1 = 000.
• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.

• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .
• E.g., u2 = 011.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• E.g., take u1 = 000.
• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.
• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .

• E.g., u2 = 011.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• E.g., take u1 = 000.
• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.
• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .

• E.g., u2 = 011.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• E.g., take u1 = 000.
• Then u1 ⊕ r ∈ RM,x iff r ∈ u1 ⊕ RM,x = {100, 110}.
• So, take u2 < 100 ⊕ RM,x ∪ 110 ⊕ RM,x .
• E.g., u2 = 011.

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Summary:

x ∈ L ∩ {0, 1}1 iff ∃u1, u2 ∈ {0, 1}3∀r ∈ {0, 1}3 :
∨

i=1,2

ui ⊕ r ∈ AM,x .

Reminder: ui ⊕ r ∈ AM,x iff M(x, ui ⊕ r) = 1.

• So, this is in Σp
2 .

• And works also for |x | > 1 and arbitrary p(|x |).

BPP in the Polynomial Hierarchy PH

000 100

010 110

001 101

011 111

• Summary:

x ∈ L ∩ {0, 1}1 iff ∃u1, u2 ∈ {0, 1}3∀r ∈ {0, 1}3 :
∨

i=1,2

ui ⊕ r ∈ AM,x .

Reminder: ui ⊕ r ∈ AM,x iff M(x, ui ⊕ r) = 1.
• So, this is in Σp

2 .
• And works also for |x | > 1 and arbitrary p(|x |).

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Note, the certificate u1u2 . . . uk has length polynomial in |x |.
• So, this formula represents a computation in Σp

2 .

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x < L : To show there is always an r s.t.

k∧
i=1

r ⊕ ui < AM,x ≡ r <
k⋃

i=1

ui ⊕ AM,x .

• Size of the complement of this set:∣∣∣∣∣∣∣
k⋃

i=1

ui ⊕ AM,x

∣∣∣∣∣∣∣ ≤
k∑

i=1

∣∣∣ui ⊕ AM,x

∣∣∣ = k
∣∣∣AM,x

∣∣∣ ≤ k4−|x |2p(|x |) < 2p(|x |).

• So, this set cannot be empty no matter how we choose u1, . . . , uk .

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x < L : To show there is always an r s.t.

k∧
i=1

r ⊕ ui < AM,x ≡ r <
k⋃

i=1

ui ⊕ AM,x .

• Size of the complement of this set:∣∣∣∣∣∣∣
k⋃

i=1

ui ⊕ AM,x

∣∣∣∣∣∣∣ ≤
k∑

i=1

∣∣∣ui ⊕ AM,x

∣∣∣ = k
∣∣∣AM,x

∣∣∣ ≤ k4−|x |2p(|x |) < 2p(|x |).

• So, this set cannot be empty no matter how we choose u1, . . . , uk .

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x < L : To show there is always an r s.t.

k∧
i=1

r ⊕ ui < AM,x ≡ r <
k⋃

i=1

ui ⊕ AM,x .

• Size of the complement of this set:∣∣∣∣∣∣∣
k⋃

i=1

ui ⊕ AM,x

∣∣∣∣∣∣∣ ≤
k∑

i=1

∣∣∣ui ⊕ AM,x

∣∣∣ = k
∣∣∣AM,x

∣∣∣ ≤ k4−|x |2p(|x |) < 2p(|x |).

• So, this set cannot be empty no matter how we choose u1, . . . , uk .

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−4kn < 1.

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−4kn < 1.

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−4kn < 1.

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−4kn < 1.

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• Assume x ∈ L : To show there are u1, . . . , uk s.t.

∀r :
k∨

i=1

ui ⊕ r ∈ AM,x ≡ ¬∃r :
k∧

i=1

ui ∈ r ⊕ RM,x .

• Let U1, . . . ,Uk be independent random variables, uniformly
distributed on {0, 1}p(|x |). (Doesn’t matter if some coincide!)

• For any given r : Pr [Ui ∈ r ⊕ RM,x] =
|r⊕RM,x |

2p(|x |) =
|RM,x |
2p(|x |) ≤ 4−n.

• Pr
[∧k

i=1 Ui ∈ r ⊕ RM,x

]
= Pr [U1 ∈ r ⊕ RM,x]k ≤ 4−kn.

• Pr
[
∃r :

∧k
i=1 Ui ∈ r ⊕ RM,x

]
≤

∑
r∈{0,1}∗ 4−kn = 2p(|x |)−4kn < 1.

BPP in the Polynomial Hierarchy PH

Claim:
Given x set k := dp(|x |)/|x |e+ 1. Then:

x ∈ L iff ∃u1, . . . , uk ∈ {0, 1}p(|x |)∀r ∈ {0, 1}p(|x |) :
k∨

i=1

M(x, ui ⊕ r) = 1.

• For both cases there is an n0 s.t. the bounds hold for all x with
|x | > n0.

• L ∩ {0, 1}n0 can be decided trivially in P.

Summary

• Obtain RP from NP by
• choosing the certificate (transition function) uniformaly at random
• requiring a bound on Pr [AM,x] if x ∈ L s.t.
• error prob. can be reduced within a polynomial number of reruns.

• One-sided probability of error:
• RP: false negatives
• coRP: false postives
• Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP

• ZPP := RP ∩ coRP can be decided in expected polynomial time
• Zero probability of error (if we wait for the definitiv answer)
• Las Vegas algorithms

Summary

• Obtain RP from NP by
• choosing the certificate (transition function) uniformaly at random
• requiring a bound on Pr [AM,x] if x ∈ L s.t.
• error prob. can be reduced within a polynomial number of reruns.

• One-sided probability of error:
• RP: false negatives
• coRP: false postives
• Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP

• ZPP := RP ∩ coRP can be decided in expected polynomial time
• Zero probability of error (if we wait for the definitiv answer)
• Las Vegas algorithms

Summary

• Obtain RP from NP by
• choosing the certificate (transition function) uniformaly at random
• requiring a bound on Pr [AM,x] if x ∈ L s.t.
• error prob. can be reduced within a polynomial number of reruns.

• One-sided probability of error:
• RP: false negatives
• coRP: false postives
• Monte Carlo algorithms: ZEROP ∈ coRP, perfect matchings ∈ RP

• ZPP := RP ∩ coRP can be decided in expected polynomial time
• Zero probability of error (if we wait for the definitiv answer)
• Las Vegas algorithms

Summary

• Obtained PP from RP by
• allowing also for false positives
• Error probabilities depend on each other: ≤ 1/4 and < 1 − 1/4
• NP ⊆ PP: “PP allows for trading one error prob. for the other”

• Obtained BPP from PP by
• bounding both error prob. independently of each other.
• Papadimitriou: “most comprehensive, yet plausible notion of realistic

computation”
• Conjecture: BPP = P
• Expected running time as powerful as exact running time.
• One certificate un for all x with |x | = n.
• Error reduction to 2−nk

within a polynomial number of reruns.

Summary

• Obtained PP from RP by
• allowing also for false positives
• Error probabilities depend on each other: ≤ 1/4 and < 1 − 1/4
• NP ⊆ PP: “PP allows for trading one error prob. for the other”

• Obtained BPP from PP by
• bounding both error prob. independently of each other.
• Papadimitriou: “most comprehensive, yet plausible notion of realistic

computation”
• Conjecture: BPP = P
• Expected running time as powerful as exact running time.
• One certificate un for all x with |x | = n.
• Error reduction to 2−nk

within a polynomial number of reruns.

Summary

P ZPP

RP

coRP

NP

BPP = coBPP

coNP

Πp
2 ∩ Σ

p
2

PP = coPP

PSPACE

• Πp
2 ∩ Σ

p
2 ⊆ PP unknown.

• NP ∪ coNP ⊆ PP known.

Summary

P ZPP

RP

coRP

NP

BPP = coBPP

coNP

Πp
2 ∩ Σ

p
2

PP = coPP

PSPACE

• Gödel Price (1998) for Toda’s theorem (1989): PH ⊆ PPP

• PPP: poly-time TMs having access to a PP-oracle.
• If PP ⊆ Σp

k for some k , then PH = Σp
k .

• If PP ⊆ PH, then PH collapses at some finite level as PP has complete
problems (see exercises).

Syntactic and Semantic Complexity Classes

• Just mentioned: PP has complete probems
• φ ∈ MAJSAT iff at least 2n−1 + 1 satisfying assignments of 2n possible

(see exercises).

• Unknown if there are complete problems for ZPP,RP,BPP.

• Reason to believe that there are none:
• P,NP, coNP are syntatic complexity classes (complete problems).
• ZPP,RP, coRP,BPP are semantic complexity classes.

• Example:
• NP:

x ∈ L ⇔ Pr [AM,x] > 0.

Every poly-time TM M(x, u) defines a language in NP.
• BPP:

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [RM,x] ≥ 3/4.

Not every poly-time TM M(x, u) defines a language in BPP.

• Ex.: What about PP?

Syntactic and Semantic Complexity Classes

• Just mentioned: PP has complete probems
• φ ∈ MAJSAT iff at least 2n−1 + 1 satisfying assignments of 2n possible

(see exercises).

• Unknown if there are complete problems for ZPP,RP,BPP.
• Reason to believe that there are none:

• P,NP, coNP are syntatic complexity classes (complete problems).
• ZPP,RP, coRP,BPP are semantic complexity classes.

• Example:
• NP:

x ∈ L ⇔ Pr [AM,x] > 0.

Every poly-time TM M(x, u) defines a language in NP.
• BPP:

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [RM,x] ≥ 3/4.

Not every poly-time TM M(x, u) defines a language in BPP.

• Ex.: What about PP?

Syntactic and Semantic Complexity Classes

• Just mentioned: PP has complete probems
• φ ∈ MAJSAT iff at least 2n−1 + 1 satisfying assignments of 2n possible

(see exercises).

• Unknown if there are complete problems for ZPP,RP,BPP.
• Reason to believe that there are none:

• P,NP, coNP are syntatic complexity classes (complete problems).
• ZPP,RP, coRP,BPP are semantic complexity classes.

• Example:
• NP:

x ∈ L ⇔ Pr [AM,x] > 0.

Every poly-time TM M(x, u) defines a language in NP.
• BPP:

x ∈ L ⇒ Pr [AM,x] ≥ 3/4 and x < L ⇒ Pr [RM,x] ≥ 3/4.

Not every poly-time TM M(x, u) defines a language in BPP.

• Ex.: What about PP?

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition
For a poly-time M(x, u) using certificates u ∈ {0, 1}p(|x |) set

LM(x) := y0y1 . . . y2p(|x |)−1 with yi = M(x, ui) and (ui)2 = i

The leaf-language of M is then LM := {LM(x) | x ∈ {0, 1}∗}.

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition (cont’d)

For A ,R ⊆ {0, 1}∗ with A ∩ R = ∅ the class C[A ,R] consists of all
language L for which there is a TM M(x, u) s.t. ∀x ∈ {0, 1}∗:

x ∈ L ⇒ LM(x) ∈ A and x < L ⇒ LM(x) ∈ R .

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7
Definition (cont’d)

C[A ,R] is called syntactic if A ∪ R = {0, 1}∗, otherwise it is called
semantic.

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• NP = C[(0 + 1)∗1(0 + 1)∗, 0∗]

• RP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, 0∗]

• PP = C[{w ∈ {0, 1}∗ | #1w
#0w ≥ 3}, {w ∈ {0, 1}∗ | #1w

#0w < 3}]

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• What about P?

• P = P[1(0 + 1)∗, 0(0 + 1)∗].
• Certificate 0 . . . 0 can always be used (compare this to BPP)

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• What about P?
• P = P[1(0 + 1)∗, 0(0 + 1)∗].

• Certificate 0 . . . 0 can always be used (compare this to BPP)

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• What about P?
• P = P[1(0 + 1)∗, 0(0 + 1)∗].

• Certificate 0 . . . 0 can always be used (compare this to BPP)

Leaf languages

u0 u1 u2 u3 u4 u5 u6 u7

0 1

0 1

0 1

TM M(x, ui) = yi

y0 y1 y2 y3 y4 y5 y6 y7

• What about P?
• P = P[1(0 + 1)∗, 0(0 + 1)∗].
• Certificate 0 . . . 0 can always be used (compare this to BPP)

	Randomized poly-time computation with one-sided error
	Recap: P and NP
	Randomized polynomial-time RP
	Related classed: coRP, ZPP
	Randomized algorithms
	Examples
	Zero polynomial
	Perfect matchings

	Randomized poly-time computation with two-sided error
	Probabilistic polynomial time PP
	``Bounded probability of error'' polynomial time BPP
	Comparison of randomized classes
	Probabilistic Turing machines

	Robustness of BPP
	Expected running time
	Error reduction

	Characterization of BPP
	Some Kind of Derandomization
	BPP within PH

	Summary
	Syntactic and semantic complexity classes

	lecture10.pdf
	Intro
	Definition of PH
	Properties
	Examples
	Conclusion

