Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science Technical University of Munich Summer 2016

Lecture 10–Part II PH & co.

- oracles
- oracles and PH
- relativization and P vs. NP
- alternation and PH

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Certificate for membership:

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Certificate for membership:

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same Thus MinEqDNF $\in \Sigma_2^p$.

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

MinEqDNF = { $\langle \varphi, k \rangle$ | there is a DNF formula ψ of size at most k s.t. $\varphi \equiv \psi$ }

Certificate for membership:

• there exists a formula ψ such that

• for all assignments φ and ψ evaluate to the same Thus MinEqDNF $\in \Sigma_2^p$.

What if we can check equivalence of formulae for free?

Definition

An oracle is a language A.

An oracle Turing machine M^A is a Turing machine that

- 1. has an extra oracle tape, and
- 2. can ask whther the string currently written on the oracle tape belongs to *A* and in a *single* computation step gets the answer.

 P^A is a class of languages decidable by a polynomial-time oracle Turing machine with an oracle *A*; similarly NP^A etc.

• $MinEqDNF \in NP^{SAT}$

- MinEqDNF $\in \mathbb{NP}^{SAT}$
- NP \subseteq P^{SAT}
- coNP ⊆ P^{SAT} since P and P^{SAT} are deterministic classes and thus closed under complement

- MinEqDNF $\in \mathbb{NP}^{SAT}$
- NP \subseteq P^{SAT}
- coNP ⊆ P^{SAT} since P and P^{SAT} are deterministic classes and thus closed under complement
- We often write classes instead of the complete languages, e.g.,
 P^{NP} = P^{SAT} = P^{CONP}

Oracles and PH

Recall that

 $\Sigma_i \text{SAT} = \{ \exists \vec{u_1} \forall \vec{u_2} \cdots Q \vec{u_i}. \varphi(\vec{u_1}, \dots, \vec{u_i}) \mid \text{formula is true} \}$

is Σ^{p} -complete.

Oracles and PH

Recall that

 $\Sigma_{i}SAT = \{\exists \vec{u_{1}} \forall \vec{u_{2}} \cdots Q \vec{u_{i}}.\varphi(\vec{u_{1}}, \dots, \vec{u_{i}}) \mid \text{formula is true} \}$

is Σ^{p} -complete.

Theorem For every *i*, $\Sigma_{i}^{p} = NP^{\Sigma_{i-1}SAT} = NP^{\Sigma_{i-1}^{p}}$.

Oracles and PH

Recall that

 $\Sigma_i SAT = \{ \exists \vec{u_1} \forall \vec{u_2} \cdots Q \vec{u_i}. \varphi(\vec{u_1}, \dots, \vec{u_i}) \mid \text{formula is true} \}$ is Σ_i^p -complete.

Theorem For every *i*, $\Sigma_{i}^{p} = NP^{\Sigma_{i-1}SAT} = NP^{\Sigma_{i-1}^{p}}$.

 $\boldsymbol{\Sigma_3^p} = NP^{NP^{NP}}$

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove P = NP using only simulation, we can also prove P^A = NP^A for all A.
- If we can prove P ≠ NP using only simulation, we can also prove P^A ≠ NP^A for all A.

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove P = NP using only simulation, we can also prove $P^A = NP^A$ for all A.
- If we can prove P ≠ NP using only simulation, we can also prove P^A ≠ NP^A for all A.
- But there exist oracles X and Y:
 - $\mathbf{P}^X \neq \mathbf{NP}^X$
 - $P^{Y} = NP^{Y}$ (Proof: $NP^{QBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{QBF}$)

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove P = NP using only simulation, we can also prove P^A = NP^A for all A.
- If we can prove P ≠ NP using only simulation, we can also prove P^A ≠ NP^A for all A.
- But there exist oracles X and Y:
 - $\mathbf{P}^X \neq \mathbf{NP}^X$
 - $P^{Y} = NP^{Y}$ (Proof: $NP^{QBF} \subseteq NPSPACE \subseteq PSPACE \subseteq P^{QBF}$)
- Diagonalization has its limits!
 It is not sufficent to simulate computation,
 we must analyze them → e.g. cicuit complexity.

- oracles \checkmark
- oracles and PH \checkmark
- relativization and P vs. NP \checkmark
- alternation and PH

Alternation

Recall that

- Σ_2 SAT = { $\exists \vec{u_1} \forall \vec{u_2}. \varphi(\vec{u_1}, \vec{u_2})$ | formula is true } is NP^{coNP}-complete
- SAT = $\{\exists \vec{u_1}. \varphi(\vec{u_1}) \mid \text{formula is true} \}$ is NP-complete
- VAL = { $\forall \vec{u_1}.\varphi(\vec{u_1})$ | formula is true } is coNP-complete
- $\exists \sim existential certificate \sim there is an accepting computation$
- $\forall \sim$ universal certificate \sim all computations are accepting

Alternation

Definition

An alternating Turing machine is a Turing machine where

- states are partitioned into existential (denoted ∃ or ∨) and universal (denoted ∀ or ∧),
- configurations are labelled by the type of the current state,
- a configuration in the computation tree is accepting iff
 - it is ∃ and some of its successors is accepting,
 - it is ∀ and all its successors are accepting.

We define ATIME, ASPACE, AP, APSPACE etc. accordingly.

Alternation and PH

Let $\Sigma_i P$ denote the set of languages decidable by ATM

- running in polynomial time,
- with initial state being existential, and
- such that on every run there are at most *i* maximal blocks of existential and of universal configurations.

Theorem

For all *i*, $\Sigma_i^p = \Sigma_i P$.

Power of alternation

Theorem

For $f(n) \ge n$, we have ATIME $(f(n)) \subseteq$ SPACE $(f(n) \subseteq$ ATIME $(f^2(n))$.

For $f(n) \ge \log n$, we have ASPACE $(f(n)) = \text{TIME}(2^{O(f(n))})$.

Power of alternation

Theorem

For $f(n) \ge n$, we have ATIME $(f(n)) \subseteq$ SPACE $(f(n) \subseteq$ ATIME $(f^2(n))$.

For $f(n) \ge \log n$, we have ASPACE $(f(n)) = \text{TIME}(2^{O(f(n))})$.

Corollary: $L \subseteq AL = P \subseteq AP = PSPACE \subseteq APSPACE = EXP \subseteq AEXP \cdots$

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• SPACE($f(n) \subseteq \text{ATIME}(f^2(n))$

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• **SPACE**($f(n) \subseteq \text{ATIME}(f^2(n))$)

like Savitch's theorem

• ASPACE $(f(n)) \subseteq \text{TIME}(2^{O(f(n))})$

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• **SPACE**($f(n) \subseteq \text{ATIME}(f^2(n))$)

like Savitch's theorem

- ASPACE(f(n)) ⊆ TIME(2^{O(f(n))}) configuration graph + "attractor" construction
- ASPACE(f(n)) \supseteq TIME($2^{O(f(n))}$)

Power of alternation: Proofs

• ATIME $(f(n)) \subseteq$ SPACE(f(n))

DFS on the tree + remember only decisions (not configurations)

• **SPACE**($f(n) \subseteq \text{ATIME}(f^2(n))$)

like Savitch's theorem

- ASPACE(f(n)) ⊆ TIME(2^{O(f(n))}) configuration graph + "attractor" construction
- ASPACE(f(n)) ⊇ TIME(2^{O(f(n))}) guess and check the tableaux of the computation (+ halting state on the left)

What have we learnt?

- the polynomial hierarchy can be defined in terms of certificates, recursively by oracles, or by bounded alternation
- diagonalization/simulation proof techniques have their limits
- alternation seems to add power: it moves us to the "next higher" class

Up next: time/space tradeoffs, TISP(f, g)