Complexity Theory

Jan Křetínský

Chair for Foundations of Software Reliability and Theoretical Computer Science

Technical University of Munich
Summer 2016

Lecture 10-Part II
 PH \& co.

Agenda

- oracles
- oracles and PH
- relativization and P vs. NP
- alternation and PH

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

$$
\begin{aligned}
\operatorname{MinEqDNF}=\{\langle\varphi, k\rangle \mid & \text { there is a DNF formula } \psi \\
& \text { of size at most } k \text { s.t. } \varphi \equiv \psi\}
\end{aligned}
$$

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

$$
\begin{aligned}
& \text { MinEqDNF }=\{\langle\varphi, k\rangle \mid \text { there is a DNF formula } \psi \\
& \text { of size at most } k \text { s.t. } \varphi \equiv \psi\}
\end{aligned}
$$

Certificate for membership:

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

$$
\begin{aligned}
& \text { MinEqDNF }=\{\langle\varphi, k\rangle \mid \text { there is a DNF formula } \psi \\
& \text { of size at most } k \text { s.t. } \varphi \equiv \psi\}
\end{aligned}
$$

Certificate for membership:

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

Thus MinEqDNF $\in \Sigma_{2}^{p}$.

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.

$$
\begin{aligned}
\operatorname{MinEqDNF}=\{\langle\varphi, k\rangle \mid & \text { there is a DNF formula } \psi \\
& \text { of size at most } k \text { s.t. } \varphi \equiv \psi\}
\end{aligned}
$$

Certificate for membership:

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

Thus MinEqDNF $\in \Sigma_{2}^{p}$.
What if we can check equivalence of formulae for free?

Oracle

Definition

An oracle is a language A.
An oracle Turing machine M^{A} is a Turing machine that

1. has an extra oracle tape, and
2. can ask whther the string currently written on the oracle tape belongs to A and in a single computation step gets the answer.
P^{A} is a class of languages decidable by a polynomial-time oracle Turing machine with an oracle A; similarly NP^{A} etc.

Examples

- MinEqDNF \in Np ${ }^{S A T}$

Examples

- MinEqDNF \in NPSAT
- $N P \subseteq$ PSAT
- coNP $\subseteq P^{S A T}$ since P and $P^{S A T}$ are deterministic classes and thus closed under complement

Examples

- MinEqDNF \in NPSAT
- $N P \subseteq P^{S A T}$
- coNP $\subseteq P^{S A T}$ since P and $P^{S A T}$ are deterministic classes and thus closed under complement
- We often write classes instead of the complete languages, e.g., $P^{N P}=P^{S A T}=P^{c o N P}$

Oracles and PH

Recall that

$$
\Sigma_{i} \text { SAT }=\left\{\exists \vec{u}_{1} \forall \vec{u}_{2} \cdots Q \vec{u}_{i} \cdot \varphi\left(\vec{u}_{1}, \ldots, \vec{u}_{i}\right) \mid \text { formula is true }\right\}
$$

is Σ_{i}^{p}-complete.

Oracles and PH

Recall that

$$
\Sigma_{i} \text { SAT }=\left\{\exists \vec{u}_{1} \forall \vec{u}_{2} \cdots Q \vec{u}_{i} \cdot \varphi\left(\vec{u}_{1}, \ldots, \vec{u}_{i}\right) \mid \text { formula is true }\right\}
$$

is Σ_{i}^{p}-complete.

Theorem

For every $i, \Sigma_{i}^{p}=N P^{\Sigma_{i-1}} S A T=N P^{\Sigma_{i-1}^{p}}$.

Oracles and PH

Recall that

$$
\Sigma_{i} \text { SAT }=\left\{\exists \vec{u}_{1} \forall \vec{u}_{2} \cdots Q \vec{u}_{i} \cdot \varphi\left(\vec{u}_{1}, \ldots, \vec{u}_{i}\right) \mid \text { formula is true }\right\}
$$

is Σ_{i}^{p}-complete.

Theorem

For every $i, \Sigma_{i}^{p}=N P^{\Sigma_{i-1} S A T}=N P^{\Sigma_{i-1}^{p}}$.

$$
\Sigma_{3}^{p}=N P^{N P^{N P}}
$$

Relativization and limits of diagonalization

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.

Relativization and limits of diagonalization

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove $P=N P$ using only simulation, we can also prove $\mathrm{P}^{A}=N P^{A}$ for all A.
- If we can prove $\mathrm{P} \neq \mathrm{NP}$ using only simulation, we can also prove $P^{A} \neq N P^{A}$ for all A.

Relativization and limits of diagonalization

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove $P=N P$ using only simulation, we can also prove $\mathrm{P}^{A}=\mathrm{NP}^{A}$ for all A.
- If we can prove $\mathrm{P} \neq \mathrm{NP}$ using only simulation, we can also prove $\mathrm{P}^{A} \neq N P^{A}$ for all A.
- But there exist oracles X and Y :
- $\mathrm{P}^{X} \neq \mathrm{NP}^{X}$
- $\mathrm{P}^{Y}=\mathrm{NP}^{Y}\left(\right.$ Proof: $\mathrm{N} \mathrm{P}^{\mathrm{QBF}} \subseteq \mathrm{NPSPACE} \subseteq$ PSPACE $\left.\subseteq \mathrm{P}^{\mathrm{QBF}}\right)$

Relativization and limits of diagonalization

- Diagonalization is based on simulation.
- Simulation-based proofs about TMs can be copied for oracle TMs.
- If we can prove $\mathrm{P}=\mathrm{NP}$ using only simulation, we can also prove $\mathrm{P}^{A}=N \mathrm{P}^{A}$ for all A.
- If we can prove $\mathrm{P} \neq \mathrm{NP}$ using only simulation, we can also prove $\mathrm{P}^{A} \neq N P^{A}$ for all A.
- But there exist oracles X and Y :
- $\mathrm{P}^{X} \neq \mathrm{NP}^{X}$
- $\mathrm{P}^{Y}=\mathrm{NP}^{Y}$ (Proof: $\mathrm{NP}^{\mathrm{QBF}} \subseteq$ NPSPACE \subseteq PSPACE $\subseteq \mathrm{P}^{\mathrm{QBF}}$)
- Diagonalization has its limits! It is not sufficent to simulate computation, we must analyze them \rightarrow e.g. cicuit complexity.

Agenda

- oracles \checkmark
- oracles and PH \checkmark
- relativization and P vs. NP \checkmark
- alternation and PH

Alternation

Recall that

- Σ_{2} SAT $=\left\{\exists \overrightarrow{u_{1}} \forall \overrightarrow{u_{2}} \cdot \varphi\left(\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right) \mid\right.$ formula is true $\}$ is NP ${ }^{\text {coNP }}$-complete
- SAT $=\left\{\exists \overrightarrow{u_{1}} \cdot \varphi\left(\overrightarrow{u_{1}}\right) \mid\right.$ formula is true $\}$ is NP-complete
- VAL $=\left\{\forall \overrightarrow{u_{1}} \cdot \varphi\left(\overrightarrow{u_{1}}\right) \mid\right.$ formula is true $\}$ is coNP-complete
- $\exists \sim$ existential certificate \sim there is an accepting computation
- $\forall \sim$ universal certificate \sim all computations are accepting

Alternation

Definition

An alternating Turing machine is a Turing machine where

- states are partitioned into existential (denoted \exists or \vee) and universal (denoted \forall or \wedge),
- configurations are labelled by the type of the current state,
- a configuration in the computation tree is accepting iff
- it is \exists and some of its successors is accepting,
- it is \forall and all its successors are accepting.

We define ATIME, ASPACE, AP, APSPACE etc. accordingly.

Alternation and PH

Let $\Sigma_{i} P$ denote the set of languages decidable by ATM

- running in polynomial time,
- with initial state being existential, and
- such that on every run there are at most i maximal blocks of existential and of universal configurations.

Theorem

For all $i, \Sigma_{i}^{p}=\Sigma_{i} \mathrm{P}$.

Power of alternation

Theorem
For $f(n) \geq n$, we have
$\operatorname{ATIME}(f(n)) \subseteq \operatorname{SPACE}\left(f(n) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)\right.$.

For $f(n) \geq \log n$, we have $\operatorname{ASPACE}(f(n))=\operatorname{TIME}\left(2^{O(f(n))}\right)$.

Power of alternation

Theorem
For $f(n) \geq n$, we have
$\operatorname{ATIME}(f(n)) \subseteq \operatorname{SPACE}\left(f(n) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)\right.$.

For $f(n) \geq \log n$, we have
$\operatorname{ASPACE}(f(n))=\operatorname{TIME}\left(2^{O(f(n))}\right)$.

Corollary:
$\mathrm{L} \subseteq A L=P \subseteq A P=P S P A C E \subseteq A P S P A C E=E X P \subseteq A E X P \cdots$

Power of alternation: Proofs

- $\operatorname{ATIME}(f(n)) \subseteq \operatorname{SPACE}(f(n)$

Power of alternation: Proofs

- $\operatorname{ATIME}(f(n)) \subseteq \operatorname{SPACE}(f(n)$ DFS on the tree + remember only decisions (not configurations)
- $\operatorname{SPACE}\left(f(n) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)\right.$

Power of alternation: Proofs

- $\operatorname{ATIME}(f(n)) \subseteq \operatorname{SPACE}(f(n)$ DFS on the tree + remember only decisions (not configurations)
- $\operatorname{SPACE}\left(f(n) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)\right.$ like Savitch's theorem
- $\operatorname{ASPACE}(f(n)) \subseteq \operatorname{TIME}\left(2^{O(f(n))}\right)$

Power of alternation: Proofs

- $\operatorname{ATIME}(f(n)) \subseteq \operatorname{SPACE}(f(n)$ DFS on the tree + remember only decisions (not configurations)
- $\operatorname{SPACE}\left(f(n) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)\right.$ like Savitch's theorem
- $\operatorname{ASPACE}(f(n)) \subseteq \operatorname{TIME}\left(2^{O(f(n))}\right)$ configuration graph + "attractor" construction
- $\operatorname{ASPACE}(f(n)) \supseteq \operatorname{TIME}\left(2^{O(f(n))}\right)$

Power of alternation: Proofs

- $\operatorname{ATIME}(f(n)) \subseteq \operatorname{SPACE}(f(n)$ DFS on the tree + remember only decisions (not configurations)
- $\operatorname{SPACE}\left(f(n) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)\right.$
like Savitch's theorem
- ASPACE $(f(n)) \subseteq \operatorname{TIME}\left(2^{O(f(n))}\right)$ configuration graph + "attractor" construction
- ASPACE $(f(n)) \supseteq \operatorname{TIME}\left(2^{O(f(n))}\right)$ guess and check the tableaux of the computation (+ halting state on the left)

What have we learnt?

- the polynomial hierarchy can be defined in terms of certificates, recursively by oracles, or by bounded alternation
- diagonalization/simulation proof techniques have their limits
- alternation seems to add power: it moves us to the "next higher" class

Up next: time/space tradeoffs, $\operatorname{TISP}(f, g)$

