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Lecture 10–Part II

PH & co.
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Oracles

Agenda

• oracles

• oracles and PH
• relativization and P vs. NP
• alternation and PH
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Oracles

Minimizing Boolean formulas

Let DNF be disjunctive normal form and ≡ denote logic equivalence.

MinEqDNF = {〈ϕ, k 〉 | there is a DNF formula ψ

of size at most k s.t. ϕ ≡ ψ}

Certificate for membership:

• there exists a formula ψ such that

• for all assignments ϕ and ψ evaluate to the same

Thus MinEqDNF ∈ Σp
2 .

What if we can check equivalence of formulae for free?
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Oracles

Oracle

Definition
An oracle is a language A .
An oracle Turing machine MA is a Turing machine that

1. has an extra oracle tape, and

2. can ask whther the string currently written on the oracle tape
belongs to A and in a single computation step gets the answer.

PA is a class of languages decidable by a polynomial-time oracle
Turing machine with an oracle A ; similarly NPA etc.
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Oracles

Examples

• MinEqDNF ∈ NPSAT

• NP ⊆ PSAT

• coNP ⊆ PSAT since P and PSAT are deterministic classes and
thus closed under complement

• We often write classes instead of the complete languages, e.g.,
PNP = PSAT = PcoNP
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Oracles

Oracles and PH

Recall that

ΣiSAT = {∃ ~u1∀ ~u2 · · ·Q ~ui .ϕ( ~u1, . . . , ~ui) | formula is true }

is Σp
i -complete.

Theorem
For every i, Σp

i = NPΣi−1SAT = NPΣ
p
i−1 .

Σp
3 = NPNPNP
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Oracles

Relativization and limits of diagonalization

• Diagonalization is based on simulation.

• Simulation-based proofs about TMs can be copied for oracle
TMs.

• If we can prove P = NP using only simulation,
we can also prove PA = NPA for all A .

• If we can prove P , NP using only simulation,
we can also prove PA , NPA for all A .

• But there exist oracles X and Y :
• PX , NPX

• PY = NPY (Proof: NPQBF ⊆ NPSPACE ⊆ PSPACE ⊆ PQBF)

• Diagonalization has its limits!
It is not sufficent to simulate computation,
we must analyze them→ e.g. cicuit complexity.
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Agenda

• oracles X

• oracles and PH X
• relativization and P vs. NP X
• alternation and PH
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Oracles

Alternation

Recall that

• Σ2SAT = {∃ ~u1∀ ~u2.ϕ( ~u1, ~u2) | formula is true } is
NPcoNP-complete

• SAT = {∃ ~u1.ϕ( ~u1) | formula is true } is NP-complete

• VAL = {∀ ~u1.ϕ( ~u1) | formula is true } is coNP-complete

• ∃ ∼ existential certificate ∼ there is an accepting computation

• ∀ ∼ universal certificate ∼ all computations are accepting
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Oracles

Alternation

Definition
An alternating Turing machine is a Turing machine where

• states are partitioned into existential (denoted ∃ or ∨) and
universal (denoted ∀ or ∧),

• configurations are labelled by the type of the current state,
• a configuration in the computation tree is accepting iff

• it is ∃ and some of its successors is accepting,
• it is ∀ and all its successors are accepting.

We define ATIME,ASPACE,AP,APSPACE etc. accordingly.
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Oracles

Alternation and PH

Let ΣiP denote the set of languages decidable by ATM

• running in polynomial time,

• with initial state being existential, and

• such that on every run there are at most i maximal blocks of
existential and of universal configurations.

Theorem
For all i, Σp

i = ΣiP.
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Oracles

Power of alternation

Theorem
For f(n) ≥ n, we have
ATIME(f(n)) ⊆ SPACE(f(n) ⊆ ATIME(f2(n)).

For f(n) ≥ log n, we have
ASPACE(f(n)) = TIME(2O(f(n))).

Corollary:
L ⊆ AL = P ⊆ AP = PSPACE ⊆ APSPACE = EXP ⊆ AEXP · · ·
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Oracles

Power of alternation: Proofs

• ATIME(f(n)) ⊆ SPACE(f(n)

DFS on the tree + remember only decisions (not configurations)

• SPACE(f(n) ⊆ ATIME(f2(n))
like Savitch’s theorem

• ASPACE(f(n)) ⊆ TIME(2O(f(n)))
configuration graph + “attractor” construction

• ASPACE(f(n)) ⊇ TIME(2O(f(n)))
guess and check the tableaux of the computation
(+ halting state on the left)
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Oracles

What have we learnt?

• the polynomial hierarchy can be defined in terms of certificates,
recursively by oracles, or by bounded alternation

• diagonalization/simulation proof techniques have their limits

• alternation seems to add power:
it moves us to the “next higher” class

Up next: time/space tradeoffs, TISP(f , g)
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