
Complexity Theory

Jan Křetı́nský

Chair for Foundations of Software Reliability and Theoretical Computer Science
Technical University of Munich

Summer 2016

Based on slides by Jörg Kreiker

Lecture 1

Introduction

Agenda

• computational complexity and two problems
• your background and expectations
• organization
• basic concepts
• teaser
• summary

Computational Complexity

• quantifying the efficiency of computations
• not: computability, descriptive complexity, . . .
• computation: computing a function f : {0, 1}∗ → {0, 1}∗

• everything else matter of encoding
• model of computation?

• efficiency: how many resources used by computation
• time: number of basic operations with respect to input size
• space: memory usage

Dinner Party

Example (Dinner Party)

You want to throw a dinner party. You have a list of pairs of friends who do
not get along. What is the largest party you can throw such that you do not
invite any two who don’t get along?

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• largest party?
• naive computation

• check all sets of people for
compatibility

• number of subsets of n
element set is 2n

• intractable

• can we do better?
• observation: for a given set

compatibilty checking is easy

Dinner Party

Example (Dinner Party)

You want to throw a dinner party. You have a list of pairs of friends who do
not get along. What is the largest party you can throw such that you do not
invite any two who don’t get along?

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• largest party?
• naive computation

• check all sets of people for
compatibility

• number of subsets of n
element set is 2n

• intractable

• can we do better?
• observation: for a given set

compatibilty checking is easy

Dinner Party

Example (Dinner Party)

You want to throw a dinner party. You have a list of pairs of friends who do
not get along. What is the largest party you can throw such that you do not
invite any two who don’t get along?

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• largest party?
• naive computation

• check all sets of people for
compatibility

• number of subsets of n
element set is 2n

• intractable

• can we do better?
• observation: for a given set

compatibilty checking is easy

Map Coloring

Example (Map Coloring)

Can you color a map with three different colors, such that no pair of
adjacent countries has the same color. Countries are adjacent if they have
a non-zero length, shared border.

• naive algorithm: try all colorings
and check

• number of 3-colorings for n
countries: 3n

• can we do better?
• observation: for a given coloring

compatibilty checking is easy

Map Coloring

Example (Map Coloring)

Can you color a map with three different colors, such that no pair of
adjacent countries has the same color. Countries are adjacent if they have
a non-zero length, shared border.

• naive algorithm: try all colorings
and check

• number of 3-colorings for n
countries: 3n

• can we do better?
• observation: for a given coloring

compatibilty checking is easy

What about you?

• What do you expect?
• What do you already know about complexity?
• behavior in class?
• code of conduct?
• immediate feedback

Organization

• lecture in English
• course website:
http://www7.in.tum.de/um/courses/complexity/SS16/

• two lectures per week
• Tuesdays, 14.00–16.00, 02.13.010
• Wednesdays, 8.00–10.00, 02.13.010

• tutorial: Mondays, 10.00-12.00, 03.09.014 starting next week
• tutor: Christopher Broadbent
• weekly exercise sheets, not mandatory

Literature

• lecture based on Computational Complexity: A Modern Approach by
Sanjeev Arora and Boaz Barak

• book website:
http://www.cs.princeton.edu/theory/complexity/

• useful links plus freely available draft
• lecture is self-contained
• more recommended reading on course website

Assessment

• written or oral exam, depending on number of students
• 10x10-tests

• app. 10 times, we will have a 10 minute mini test
• happens during lectures, un-announced, covers 2-4 lectures
• self-assessment and feedback to us
• if C is ratio of correct answers, exam bonus computed by

d5C − 1e
2

• in case of a written exam, grading is according to the table below

Σ Points Grade Σ Points Grade
[0, 5) 5,0 (26, 28] 2,7
[5, 11) 4,7 (28, 30] 2,3
[11, 17) 4,3 (30, 32] 2,0
[17, 19] 4,0 (32, 34] 1,7
(19, 22] 3,7 (34, 36] 1,3
(22, 24] 3,3 (36, 40] 1,0
(24, 26] 3,0

Agenda

• computational complexity and two problems X
• your background and expectations X
• organization X
• basic concepts
• teaser
• summary

Prerequisites

• sets, relations, functions
• formal languages
• Turing machines
• graphs and algorithms on graphs
• little probability theory
• Landau symbols

Landau symbols

• characterize asymptotic behavior of functions (on integers, reals)
• ignore constant factors
• useful to talk about resource usage

• upper bound: f ∈ O(g) defined by
∃c > 0. ∃n0 > 0. ∀n > n0. f(n) ≤ c · g(n)

• dominated by: f ∈ o(g) defined by ∀ε > 0. ∃n0 > 0. ∀n > n0.
f(n)
g(n) < ε

• lower bound: f ∈ Ω(g) iff g ∈ O(f)

• tight bound: f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g)

• dominating: f ∈ ω(g) iff g ∈ o(f)

Landau symbols

• characterize asymptotic behavior of functions (on integers, reals)
• ignore constant factors
• useful to talk about resource usage
• upper bound: f ∈ O(g) defined by
∃c > 0. ∃n0 > 0. ∀n > n0. f(n) ≤ c · g(n)

• dominated by: f ∈ o(g) defined by ∀ε > 0. ∃n0 > 0. ∀n > n0.
f(n)
g(n) < ε

• lower bound: f ∈ Ω(g) iff g ∈ O(f)

• tight bound: f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g)

• dominating: f ∈ ω(g) iff g ∈ o(f)

Intractability

Polynomial

versus

Exponential

• computations using exponential time or space intractable for all but
the smallest inputs

• for a map with 200 countries: app. 2.66 · 1095 3-colorings
• atoms in the universe (wikipedia): 8 · 1080

• computational complexity: tractable vs. intractable
• tractable: problems with runtimes

⋃
p>0 O(np)

• intractable: problems with runtimes O(2n)

• independent of hardware

What about our examples?

• dinner party problem tractable?
• map coloring problem tractable?
• lower bounds on time/space consumption
• upper bounds on time/space consumption
• which is harder?

Dinner Party

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• really a graph problem
• each person a node, each relation an edge
• find a maximal set of nodes, such that no two nodes are adjacent
• the independent set problem: Indset
• probably not tractable, no algorithm better than naive one known
• here: maximal independent set of size 4

Dinner Party

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• really a graph problem
• each person a node, each relation an edge
• find a maximal set of nodes, such that no two nodes are adjacent

• the independent set problem: Indset
• probably not tractable, no algorithm better than naive one known
• here: maximal independent set of size 4

Dinner Party

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• really a graph problem
• each person a node, each relation an edge
• find a maximal set of nodes, such that no two nodes are adjacent

• the independent set problem: Indset
• probably not tractable, no algorithm better than naive one known
• here: maximal independent set of size 4

Dinner Party

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• really a graph problem
• each person a node, each relation an edge
• find a maximal set of nodes, such that no two nodes are adjacent
• the independent set problem: Indset
• probably not tractable, no algorithm better than naive one known

• here: maximal independent set of size 4

Dinner Party

person does not get along with
Jack James, John, Kate
James Jack, Hugo, Sayid
John Jack, Juliet, Sun
Kate Jack, Claire, Jin
Hugo James, Claire, Sun
Claire Hugo, Kate, Juliet
Juliet John, Sayid, Claire
Sun John, Hugo, Jin
Sayid James, Juliet, Jin
Jin Sayid, Sun, Kate

• really a graph problem
• each person a node, each relation an edge
• find a maximal set of nodes, such that no two nodes are adjacent
• the independent set problem: Indset
• probably not tractable, no algorithm better than naive one known
• here: maximal independent set of size 4

Map Coloring

• really a graph problem
• each country a node, each border an edge
• color each node such that no two adjacent nodes have same color
• the three coloring problem: 3−Coloring
• probably not tractable, no algorithm better than naive one known
• here: answer is yes

Map Coloring

• really a graph problem
• each country a node, each border an edge
• color each node such that no two adjacent nodes have same color

• the three coloring problem: 3−Coloring
• probably not tractable, no algorithm better than naive one known
• here: answer is yes

Map Coloring

• really a graph problem
• each country a node, each border an edge
• color each node such that no two adjacent nodes have same color
• the three coloring problem: 3−Coloring
• probably not tractable, no algorithm better than naive one known

• here: answer is yes

Map Coloring

• really a graph problem
• each country a node, each border an edge
• color each node such that no two adjacent nodes have same color
• the three coloring problem: 3−Coloring
• probably not tractable, no algorithm better than naive one known
• here: answer is yes

Bounds

• upper bounds
• time (naive algorithm): O(2n) for n persons/countries
• space (naive algorith): O(np) for n persons/countries and a small p

• lower bounds
• very little known
• difficult because of infinitely many algorithms
• both problems could have a linear time and a logarithmic space

algorithm
• but not simultaneously

Bounds

• upper bounds
• time (naive algorithm): O(2n) for n persons/countries
• space (naive algorith): O(np) for n persons/countries and a small p

• lower bounds
• very little known
• difficult because of infinitely many algorithms
• both problems could have a linear time and a logarithmic space

algorithm
• but not simultaneously

Which is harder?

• instead of tight bounds say which problem is harder
• ⇒ reductions

IF • there is an efficient procedure for problem A and
• and an efficient procedure for B using the procedure

for A

THEN B cannot be radically harder than A

notation: B ≤ A

Which is harder?

• instead of tight bounds say which problem is harder
• ⇒ reductions

IF • there is an efficient procedure for problem A and
• and an efficient procedure for B using the procedure

for A

THEN B cannot be radically harder than A

notation: B ≤ A

3−Coloring ≤ Indset

How can we solve 3−Coloring using an algorithm to solve Indset?

• triplicate the original graph (V ,E) into (V × {1, 2, 3},E′) where

E′ ={((v , i), (w, i)) | (v ,w) ∈ E, i ∈ {1, 2, 3}}∪

{((v , i), (v , j)) | v ∈ V , i , j ∈ {1, 2, 3}}

efficient
• check whether there is an independent set of size |V |

assumed efficeint

Need to ensure: procedure returns yes if and only if the graph is
3-colorable.

3−Coloring ≤ Indset

How can we solve 3−Coloring using an algorithm to solve Indset?

• triplicate the original graph (V ,E) into (V × {1, 2, 3},E′) where

E′ ={((v , i), (w, i)) | (v ,w) ∈ E, i ∈ {1, 2, 3}}∪

{((v , i), (v , j)) | v ∈ V , i , j ∈ {1, 2, 3}}

efficient

• check whether there is an independent set of size |V |
assumed efficeint

Need to ensure: procedure returns yes if and only if the graph is
3-colorable.

3−Coloring ≤ Indset

How can we solve 3−Coloring using an algorithm to solve Indset?

• triplicate the original graph (V ,E) into (V × {1, 2, 3},E′) where

E′ ={((v , i), (w, i)) | (v ,w) ∈ E, i ∈ {1, 2, 3}}∪

{((v , i), (v , j)) | v ∈ V , i , j ∈ {1, 2, 3}}

efficient
• check whether there is an independent set of size |V |

assumed efficeint

Need to ensure: procedure returns yes if and only if the graph is
3-colorable.

3−Coloring ≤ Indset

How can we solve 3−Coloring using an algorithm to solve Indset?

• triplicate the original graph (V ,E) into (V × {1, 2, 3},E′) where

E′ ={((v , i), (w, i)) | (v ,w) ∈ E, i ∈ {1, 2, 3}}∪

{((v , i), (v , j)) | v ∈ V , i , j ∈ {1, 2, 3}}

efficient
• check whether there is an independent set of size |V |

assumed efficeint

Need to ensure: procedure returns yes if and only if the graph is
3-colorable.

Polynomial certificates: NP

• whole class of problems can be reduced to Indset
• all of them have polynomially checkable certificates
• characterizes (in)famous class NP
• all problems in NP reducible to Indset makes Indset NP-hard.
• 3−Coloring also NP-hard
• no polynomial-time algorithms known for NP-hard problems
• not all problems have polynomial certificates, e.g. winning strategy in

chess

Agenda

• computational complexity and two problems X
• your background and expectations X
• organization X
• basic concepts X
• teaser
• summary

Lots of things to explore

• precise definition of computational model and resources
• problems with polynomial time checkable certificates
• space classes
• approximations
• hierarchies (polynomial, time/space tradeoffs)
• randomization
• parallelism
• average case complexities
• probabilistically checkable proofs
• (quantum computing)
• (logical characterizations of complexity classes)
• a bag of proof techniques

What have we learnt?

• polynomial ∼ tractable; exponential ∼ intractable
• lower bounds hard to come by
• reductions key to establish relations among (classes of problems)
• NP: polynomially checkable certificates
• Indset ∈ NP, 3−Coloring ∈ NP

