Technische Universität München (I7) Prof. J. Křetínský / Dr. C.H. Broadbent

Computational Complexity – Homework 10

Discussed on Monday 20.6.2016.

Exercise 10.1

Give an interactive proof protocol for graph isomorphism and show that your protocol satisfies the completeness and soundness requirements.

Can you give a zero-knowledge one, too?

Exercise 10.2

Let p be a prime number. An integer a is then a quadratic residue modulo p if there is some integer b s.t. $a \equiv b^2 \pmod{p}$.

- (a) Show that $QR := \{(a, p) \in \mathbb{Z}^2 \mid a \text{ is a quadratic residue modulo } p\}$ is in **NP**.
- (b) Set QNR := $\{(a, p) \in \mathbb{Z}^2 \mid a \text{ is not a quadratic residue modulo } p\}$.

Complete the following sketch to an interactive proof protocol for QNR and show its completeness and soundness:

- i) Input: integer a and prime p.
- ii) The verifier chooses $r \in \{0, 1, ..., p-1\}$ and $b \in \{0, 1\}$ uniformly at random, keeping both secret.
 - i. If b = 0, the verifier sends $r^2 \mod p$ to the prover.
 - ii. If b = 1, the verifier sends $ar^2 \mod p$ to the prover.
- iii) ...

Exercise 10.3

Show that *perfect soundness* collapses the class IP to NP, where perfect soundness means soundness with error probability 0.