Computational Complexity - Homework 10

Discussed on Monday 20.6.2016.

Exercise 10.1

Give an interactive proof protocol for graph isomorphism and show that your protocol satisfies the completeness and soundness requirements.

Can you give a zero-knowledge one, too?

Exercise 10.2

Let p be a prime number. An integer a is then a quadratic residue modulo p if there is some integer b s.t. $a \equiv b^{2}(\bmod p)$.
(a) Show that $\mathrm{QR}:=\left\{(a, p) \in \mathbb{Z}^{2} \mid a\right.$ is a quadratic residue modulo $\left.p\right\}$ is in NP.
(b) Set QNR $:=\left\{(a, p) \in \mathbb{Z}^{2} \mid a\right.$ is not a quadratic residue modulo $\left.p\right\}$.

Complete the following sketch to an interactive proof protocol for QNR and show its completeness and soundness:
i) Input: integer a and prime p.
ii) The verifier chooses $r \in\{0,1, \ldots, p-1\}$ and $b \in\{0,1\}$ uniformly at random, keeping both secret.
i. If $b=0$, the verifier sends $r^{2} \bmod p$ to the prover.
ii. If $b=1$, the verifier sends $a r^{2} \bmod p$ to the prover.
iii) ...

Exercise 10.3

Show that perfect soundness collapses the class IP to NP, where perfect soundness means soundness with error probability 0 .

