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Solution

Computational Complexity – Homework 10

Discussed on Monday 20.6.2016.

Exercise 10.1

Give an interactive proof protocol for graph isomorphism and show that your protocol satisfies
the completeness and soundness requirements.

Can you give a zero-knowledge one, too?

Solution: A simple protocol is one in which prover provides an isomorphism and then verifier
checks that it really is an isomorphism. This is not zero-knowledge since verifier learns what the
isomorphism is (in addition to its mere existence).

The following is a zero knowledge protocol:

(a) Input: Two graphs G1 and G2 (represented as adjacency matrices).

(b) If h : G1 ∼= G2, then prover uniformly at random chooses a permutation of nodes π and
computes the graph H := π(G1). It is thus the case that H is isomorphic to both graphs
with isomorphisms h1 : H ∼= G1 and h2 : H ∼= G2. (If the graphs are not isomorphic, then
prover can behave arbitrarily).

(c) Prover sends H to verifier.

(d) Verifier uniformly at random chooses a bit b ∈ {0, 1} and sends b to prover.

(e) Prover sends hb to verifier.

(f) Verifier accepts if hb is a permuation of the nodes of H and also hb(H) = Gb, otherwise
rejects.

If the graphs are isomorphic and the parties follow the protocol, then it is clear that verifier will
always accept. If the graphs are non-isomorphic, then it is impossible for prover to pick an H that
is isomorphic to both graphs and so verifier will accept with probability at most 0.5 (if verifier
is unlucky and chooses b such that H is isomorphic to Gb and prover returns the associated
isomorphism).

Thus by repeating the protocol twice and accepting iff both repeats are accepting, verifier will
always accept when the graphs are isomorphic and incorrectly accept only with probability
bounded above by 0.25 < 1/3.



In order to formally show that the protocol is zero-knowledge, we show that in the case when
G1 ∼= G2 there exists a probabalistic Turing Machine running in expected polynomial time (in the
size of the two graphs) that generates transcripts of the conversation with the same probability
distribution that would result from interacting with prover. This is the case even if verifier cheats
(diverges from the protocol) so long as verifier remains a probabalistic turing machine operating
in polynomial time.

Let V (G1,G2, H) be a probabalistic polynomial time Turing machine that verifier uses to generate
the bit b ∈ {0, 1} that is sent to prover after prover has sent H to verifier.

A PTM operating as follows will then generate transcripts with the same probability distribution
as genuine interactions (where verifier uses the machine V to generate its challenge bit) and will
terminate in expected polynomial time:

(a) Input: Graphs G1 and G∈ that are isomorphic.

(b) Uniformly at random pick a bit b′ ∈ {0, 1} and then pick a permutation π and compute
H := π(Gb′).

(c) Run the machine V to compute b := V (G1,G2, H).

(d) If b = b′, then output the transcript: (H, b, π−1)

(e) If b 6= b′, then go back to the beginning and start again

(The expected number of repeats is 2 since b′ is chosen independently of b and so the probability
of b = b′ on a single iteration is 1/2).

Exercise 10.2

Let p be a prime number. An integer a is then a quadratic residue modulo p if there is some
integer b s.t. a ≡ b2 (mod p).

(a) Show that QR := {(a, p) ∈ Z2 | a is a quadratic residue modulo p} is in NP.

(b) Set QNR := {(a, p) ∈ Z2 | a is not a quadratic residue modulo p}.

Complete the following sketch to an interactive proof protocol for QNR and show its
completeness and soundness:

i) Input: integer a and prime p.

ii) The verifier chooses r ∈ {0, 1, . . . , p− 1} and b ∈ {0, 1} uniformly at random, keeping
both secret.

i. If b = 0, the verifier sends r2 mod p to the prover.

ii. If b = 1, the verifier sends ar2 mod p to the prover.

iii) . . .

Exercise 10.3

Show that perfect soundness collapses the class IP to NP, where perfect soundness means
soundness with error probability 0.



Solution: We already know that NP ⊆ IP (prover provides the certificate and verifier checks
it).

Now suppose that L ∈ IP and that this is witnessed by a k-round interactive proof that is
perfectly sound. By the definition of IP there must be a deterministic polynomial time Turing
machine Vi(x, u, x1, y1, . . . , xi) giving verifier’s response at the ith step of the protocol on input
x where u is a polynomial length string chosen uniformly at random, xj is Prover’s jth response,
and yj is the message sent by verifier at the jth step. When i = k this response will be either
‘accept’ or ‘reject’. Due to perfect soundness verifier will never accept x /∈ L.

We can thus construct a deterministic polynomial time Turing machine M(x, u1 · · ·uk, x1, . . . , xk)
that behaves as follows:

(a) For i = 1 to k compute yi := Vi(x, ui, x1, y1, . . . , xi).

(b) Accept if yk is accept, otherwise reject.

Regardless of the choice of u1, . . . , uk, x1, . . . , xk perfect soundness ensures that M will reject
every x /∈ L. Since the interactive proof will result in verifier accepting 2/3 of the time, there
must in particular exist some choice of string u1, . . . , uk and some choice of responses x1, . . . , xk
by prover that results in verifier accepting. There must thus exist some certificate resulting in
M accepting x. Thus M witnesses L ∈ NP.


