Solution

Computational Complexity - Homework 9

Discussed on 13.6.2016.

Exercise 9.1

Given an undirected graph $G=(V, E)$ we call $C \subseteq V$ a (vertex) cover of G if

$$
\forall(u, v) \in E: u \in C \vee v \in C
$$

In the following, we want to study the relation between several decision and function problems related to vertex cover. These are

- $\mathrm{VC}_{D}:=\{\langle G, k\rangle \mid G$ has a vertex cover of size at most $k\}$.
- $\operatorname{MinVC}_{D}:=\{\langle G, k\rangle \mid G$ has a minimal vertex cover of size exactly $k\}$.
- MinSolVC $D:=\{\langle G, C\rangle \mid C$ is a minimal vertex cover of $G\}$.
- Calculate the minimal size $\operatorname{minVC}(G)$ of a vertex cover of G.
- Calculate a minimal vertex cover $\operatorname{MinVC}(G)$ of G.

Show:
(a) $\operatorname{MinSolVC}_{D} \leq_{p} \operatorname{MinVC}_{D}$.
(b) $\operatorname{MinSolVC}{ }_{D} \leq_{p} \overline{\mathrm{VC}}_{D}$
(c) MinVC_{D} is DP-complete
(d) $\mathrm{VC}_{D} \leq_{p} \mathrm{MinVC}_{D}$ and $\overline{\mathrm{VC}}_{D} \leq_{p} \mathrm{MinVC}_{D}$.

Remark: You only have to show that such reductions exist.
(e) Assume that $\operatorname{minVC}(G)$ can be calculated in time $T(|G|)$.

Give bounds on the time needed to decide MinVC_{D} and MinSolVC ${ }_{D}$, resp. calculate $\operatorname{MinVC}(G)$.

In particular, show that, if $T(n)$ is polynomial, then so are the other bounds.
(f) Analogously to (e), give time bounds on the considered problems assuming that $\langle G, k\rangle \in$ MinVC_{D} (resp. $\langle G, k\rangle \in \mathrm{VC}_{D}$) can be decided in time $T(|G|)$.
(g) If $\operatorname{MinVC}_{D} \leq_{p} \operatorname{MinSolVC}_{D}$, then $\mathbf{P H} \subseteq \boldsymbol{\Sigma}_{1}^{p}$.

Solution:

(a) Consider the following reduction $f(\langle G, k\rangle)$ assuming input $\langle G, C\rangle$.

- If C is not a vertex cover, then output $f(\langle G, k\rangle):=\langle G,-1\rangle$.
- Else, output $f(\langle G, k\rangle):=\langle G| C,| \rangle$.
(b) We can reduce MinSolVC ${ }_{D}$ to $\overline{\mathrm{VC}}_{D}$ in polynomial-time as:

$$
\langle G, C\rangle \in \operatorname{MinSoLVC}_{D} \text { iff } C \text { is a vertex cover of } G \wedge\langle G,| C|-1\rangle \in \overline{\mathrm{VC}_{D}}
$$

(c) We first show that MinVC_{D} is in DP:

$$
\langle G, k\rangle \in \operatorname{MinVC}_{D} \operatorname{iff}\langle G, k\rangle \in \mathrm{VC}_{D} \wedge\langle G, k-1\rangle \in \overline{\mathrm{VD}}_{D}
$$

Define therefore $L=\left\{\langle G, i\rangle \mid\langle G, i-1\rangle \in \mathrm{VC}_{D}\right\}$, then:

$$
\langle G, k\rangle \in \operatorname{MinVC}_{D} \text { iff }\langle G, k\rangle \in \mathrm{VC}_{D} \wedge\langle G, k\rangle \in \bar{L}
$$

Obviously, $\mathrm{VC}_{D}, L \in \mathbf{N P}$.
In the lecture, you have seen that C is a cover of G iff $V \backslash C$ is an independent set of G. So:

$$
\begin{array}{ll}
& \langle G, k\rangle \in \operatorname{MinVC}_{D} \\
\text { iff } & G \text { has a minimal vertex cover } C \text { of size exactly } k \\
\text { iff } & G \text { has a maximal independent set } V \backslash C \text { of size exactly } k \\
\text { iff } & \text { the largest independent set of } G \text { has size exactly } k \\
\text { iff } & \langle G,| V|-k\rangle \in \text { ExACTINDSET }
\end{array}
$$

So, MinVC_{D} and ExactIndset are equivalent w.r.t. polynomial-time reductions. As the latter is DP-complete, so is the former.
(d) As MinVC_{D} is $\mathbf{D P}$-complete and $\mathbf{N P} \cup \mathbf{c o N P} \subseteq \mathbf{D P}$, these reductions have to exist.
(e) - Given $\langle G, k\rangle$, we calculate $\operatorname{minVC}(G)$ in time $T(|G|)$ and check that $k=\operatorname{minVC}(G)$. This amounts to run time of $T(|G|)+|G|$.

- Given $\langle G, C\rangle$, we fist check in time $|E|$ that C is a vertex cover, then we decide $\langle G| C,\left\rangle \in \mathrm{MinVC}_{D}\right.$ in time at most $T(|G|)+|G|$. In total $\left.T(|G|)+2\right| G \mid$.
- For a (undirected) graph $G=(V, E)$ and a node $v \in V$, define $G-v$ as the graph we obtain from G be removing v and all edges connected to v. Note that vertex covers of G resp. $G-v$ can be transformed to a cover of the other graph by simply removing resp. adding v to the cover. In particular, if G has a minimal cover C, then for every $v \in C$ it has to hold that $C \backslash\{v\}$ is a minimal cover of $G-v$. This leads to the following algorithm:
Given $\langle G\rangle$, we calculate $\operatorname{minVC}(G)$ in time $T(|G|)$ and set $C:=\emptyset$. Assume that $V=\{1,2, \ldots, n\}$, i.e., fix some total order on V. Then for $v=1,2, \ldots, n$ do:
- Calculate $k^{\prime}:=\operatorname{minVC}(G-v)$.
- If $k^{\prime}<k$, i.e., $k^{\prime}=k-1$, set $k:=k^{\prime}, G:=G-v$, and $C:=C \cup\{v\}$.

We consider every node at most once, i.e., remove every edge at most twice, leading to an upper bound of $|V| T(|G|)+|E|$.

So, if $T(n)$ is polynomial, all the problems can be decided, resp. calculated in polynomial time.
Remark: Obviously, we can calculate $\operatorname{minVC}(G)$ in time linear in $|G|$ from $\operatorname{MinVC}(G)$. So, the same holds when we start from $\operatorname{MinVC}(G)$.
(f) We first show how the time $T^{\prime}(n)$ for deciding VC_{D} can be bounded by the running time $T(n)$ of MinVC_{D} : We have already seen in (d) that there exists a polynomial-time reduction r from VC_{D} to MinVC_{D}. Let T_{r} be the time needed to compute the reduction. So, $T^{\prime}(|G|) \leq T\left(T_{r}(|G|)\right)$. In particular, if T is polynomial, then also T^{\prime} is polynomial.
Recall that we can also compute $\min \mathrm{VC}(G)$ by using VC_{D} as an oracle for the binary search on the interval $[0,|V|]$. Hence, $\operatorname{minVC}(G)$ can be computed in time $\mathcal{O}\left(T^{\prime}(|G|) \cdot \log |V|\right)$.

So, together with (e) it follows that: if either $T(n)$ or $T^{\prime}(n)$ is polynomial, again all the other problems can also be computed/decided in polynomial time.
(g) If $\operatorname{MinVC}_{D} \leq_{p} \operatorname{MinSolVC}_{D}$, then also $\operatorname{MinVC}_{D} \leq_{p} \overline{\mathrm{VC}}_{D}$ by (b) and transitivity of \leq_{p}. So, $\overline{\mathrm{VC}}_{D}$ is DP-complete, in particular, this means $\mathrm{VC}_{D} \leq_{p} \overline{\mathrm{VC}}_{D}$ which implies $\mathbf{N P}=\mathbf{c o N P}$ and, subsequently, $\boldsymbol{\Sigma}_{1}^{p}=\boldsymbol{\Sigma}_{2}^{p}=\mathbf{P H}$.
This also shows that if either $\operatorname{MinVC}_{D} \leq \mathrm{VC}_{D}$ or $\operatorname{MinVC} D \leq \overline{\mathrm{VC}}_{D}$, then again the $\mathrm{NP}=\mathbf{c o N P}$.
So, probably MinVC ${ }_{D}$ is indeed harder to solve than the other two decision problems.
What remains is to decide if one should assume that MinSolVC D_{D} is indeed easier to solve than $\overline{\mathrm{VC}}_{D}$, or if the two problems are equivalent w.r.t. polynomial-time reductions, i.e., if $\overline{V C}_{D} \leq_{p}$ MinSolVC $_{D}$ also holds.

Exercise 9.2

Let $\Phi=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ be a set of m Boolean expressions in the variables x_{1}, \ldots, x_{n} with the restriction that every expression involves at most 3 of these n variables.
Assume we choose a truth assignment u uniformly at random from $\{0,1\}^{n}$. Denote then by $\operatorname{Pr}\left[\phi_{i}\right]$ the probability that u satisfies ϕ_{i}.
(a) Show that $\operatorname{Pr}\left[\phi_{i}\right]$ can be calculated in time polynomial in the length of ϕ_{i}.
(b) Let N be the random variable which counts the number of expressions ϕ_{i} satisfied by the random assignment u. Show that

$$
\mathbb{E}[N]=\sum_{i=1}^{m} \operatorname{Pr}\left[\phi_{i}\right]
$$

(c) We write $\mathbb{E}\left[N \mid u_{1}=0\right]$ for the expected number of expressions satisfied by a random assignment u which assigns 0 to x_{1}. Similarly, define $\mathbb{E}\left[N \mid u_{1}=1\right]$. Show:

$$
\mathbb{E}[N]=\frac{1}{2} \cdot\left(\mathbb{E}\left[N \mid u_{1}=0\right]+\mathbb{E}\left[N \mid u_{1}=1\right]\right)
$$

(d) Show that there is always a value b s.t. $\mathbb{E}\left[N \mid u_{1}=b\right] \geq \mathbb{E}[N]$.
(e) Give now a polynomial-time algorithms which computes an assignment which satisfies at least $\mathbb{E}[N]$ expressions of Φ.

Solution:

(a) By definition, we have

$$
\operatorname{Pr}\left[\phi_{i}\right]=\frac{\#\left\{u \in\{0,1\}^{n} \mid \phi_{i}(u)=1\right\}}{2^{n}}
$$

Let $\operatorname{Var}\left(\phi_{i}\right)$ be the set of variables appearing in ϕ. By assumption, we have $\operatorname{Var}\left(\phi_{i}\right) \leq k:=3$ for all $i=1,2, \ldots, n$. As the truth value of ϕ_{i} is completely determined by any truth assignment for $\operatorname{Var}\left(\phi_{i}\right)$, we also have

$$
\operatorname{Pr}\left[\phi_{i}\right]=\frac{\#\left\{u \in\{0,1\}^{\operatorname{Var}\left(\phi_{i}\right)} \mid \phi_{i}(u)=1\right\}}{2^{\mid \operatorname{Var}\left(\phi_{i}\right)}} .
$$

We there only need to evaluate every constraint ϕ_{i} for at most $2^{k}=8$ assignments where evaluating a constraint ϕ_{i} can obviously be done in time polynomial in $\left|\phi_{i}\right|$.
(b) We may consider the constraints ϕ_{i} also as random variables, i.e., $\phi_{i}(u)=1$ for an event $u \in\{0,1\}^{n}$ if u is a satisfying assignment for ϕ_{i}. Hence,

$$
N=\sum_{i=1}^{n} \phi_{i} \text { and by linearity of } \mathbb{E} \mathbb{E}[N]=\sum_{i=1}^{n} \mathbb{E}\left[\phi_{i}\right] .
$$

Note that

$$
\mathbb{E}\left[\phi_{i}\right]=0 \cdot \operatorname{Pr}\left[\phi_{i}=0\right]+1 \cdot \operatorname{Pr}\left[\phi_{i}=1\right]=\operatorname{Pr}\left[\phi_{i}\right] .
$$

Hence, we can calculate $\mathbb{E}[N]$ in time polynomial in $|\Phi|$.
Remark: Recall that for any Bernoulli random-variable $X \sim \operatorname{Bin}(1, p)$ we have $\mathbb{E}[X]=$ $\operatorname{Pr}[X=1]=p$.
(c) Intuitively, as we can simply separately consider the two cases $u_{1}=0$ and $u_{1}=1$ and first take the average for each of these cases:

$$
\begin{aligned}
\mathbb{E}[N] & =\sum_{u \in\{0,1\}^{n}} N(u) \operatorname{Pr}[u] \\
& =\sum_{u \in 0\{0,1\}^{n-1}} N(u) \operatorname{Pr}\left[u \mid u_{1}=0\right] \operatorname{Pr}\left[u_{1}=0\right]+\sum_{u \in 1\{0,1\}^{n-1}} N(u) \operatorname{Pr}\left[u \mid u_{1}=1\right] \operatorname{Pr}\left[u_{1}=1\right] \\
& =\mathbb{E}\left[N \mid u_{1}=0\right] \cdot 1 / 2+\mathbb{E}\left[N \mid u_{1}=1\right] \cdot 1 / 2 .
\end{aligned}
$$

(d) Otherwise, the average would be smaller than $\mathbb{E}[N]$.
(e) We now know that in time polynomial in $|\Phi|$ we can always determine a value b for x_{1} s.t.

$$
\mathbb{E}\left[N_{\Phi}\right] \leq \mathbb{E}\left[N_{\Phi} \mid u_{1}=b\right]=\mathbb{E}\left[N_{\Phi\left[x_{1}:=b\right]}\right]
$$

i.e., if we substitute b for x_{1} in Φ and simplify, the expected number of simultaneously satisfied constraints in the resulting constraint system $\Phi\left[x_{1}:=b\right]$ does not decrease. In particular, after n steps we have determined an assignment which satisfies at least $\mathbb{E}[N]$ constraints.

Exercise 9.3

The decision version of the traveling salesman problem (short TSP) is defined as follows:
Given distances $d_{i j} \geq 0$ between n cities and a bound $B \geq 0$, decide if there is a tour of the cities of length at most B.
We denote the corresponding decision problem by TSP_{D}, i.e.,
$\left\langle d_{1,1}, \ldots, d_{n, n}, B\right\rangle \in \operatorname{TSP}_{D}$ iff there is TSP-tour w.r.t. $\left(d_{i j}\right)$ of length at most B.
A Hamilton path in an undirected graph $G=(V, E)$ is a path in G which visits every node exactly once. The corresponding decision problem HamiltonPath ${ }_{D}$ is known to be NP-complete.
(a) Show that the following is polynomial-time reduction from HP_{D} to TSP_{D} :

Given $G=(V, E)$ with $n=|V|$ and assume that $V=\{1,2, \ldots, n\}$. Set $d_{i, j}:=1$ if the nodes i and j are connected by some edge, otherwise $d_{i, j}:=n+1$. Further, set $B:=2 n$.
(b) We call a TSP-instance $\left\langle d_{1,1}, \ldots, d_{n, n}, B\right\rangle$ metric if $d_{i j} \leq d_{i k}+d_{k j}$ holds for all i, j, k.

- Give an example of a graph G where the TSP-instance produced by the reduction above is not metric.
- Modify the reduction such that it always yields a metric TSP-instance.
(c) The following algorithm for approximating the optimal solution of a metric TSP is by Christofides:

First, compute a minimal spanning tree $T=\left(V_{T}, E_{T}\right)$ of the complete graph K_{n} with distance matrix $\left(d_{i j}\right)$. Let O be the nodes of T which have odd degree (w.r.t. T !). Consider now the complete graph K_{O} consisting only of these nodes O, and calculate a minimal matching M for it, i.e., find a subset M of the edges of K_{O} s.t. every node is connected to exactly one other node (no loops) and the total weight of M, i.e., $\sum_{(i, j) \in M} d_{i j}$, is minimal. Add now the edges M to T yielding a multigraph G, i.e., assume that the original edges of T are colored black, while those of M are colored red. Still, the weight of an edge (i, j) in G is $d_{i j}$ independent of its color. Calculate a Eulerian walk of G, i.e., a path of G which uses every edge, both black and red, of G exactly once. The approximation is then the tour embedded in the Eulerian walk.

- Convince yourself that every step of the algorithm by Christofides can be implemented in polynomial time (look it up on the Internet).
- Apply the algorithm by Christofides to the following example:

The coordinates of the inner nodes are $R \cdot\left(\cos \frac{k \cdot 2 \pi}{n}, \sin \frac{k \cdot 2 \pi}{n}\right)$, for the outer nodes $(R+c) \cdot\left(\cos \frac{k \cdot 2 \pi}{n}, \sin \frac{k \cdot 2 \pi}{n}\right)$ where $n=6, k=1,2, \ldots, 6, R=2 c m, c=0.5 \mathrm{~cm}$. Distances are given by the Euclidean norm if there is an edge, otherwise ∞.

- Try to show that Christofides' algorithm always yields a tour which is at most 50% longer than the optimal tour for a metric TSP-instance.

