Solution

Computational Complexity – Homework 9

Discussed on 13.6.2016.

Exercise 9.1

Given an undirected graph G = (V, E) we call $C \subseteq V$ a *(vertex) cover* of G if

 $\forall (u,v) \in E : u \in C \lor v \in C.$

In the following, we want to study the relation between several decision and function problems related to vertex cover. These are:

- $\operatorname{VC}_D := \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size at most } k \}.$
- MINVC_D := { $\langle G, k \rangle \mid G$ has a minimal vertex cover of size exactly k}.
- MINSOLVC_D := { $\langle G, C \rangle \mid C$ is a minimal vertex cover of G}.
- Calculate the minimal size minVC(G) of a vertex cover of G.
- Calculate a minimal vertex cover MinVC(G) of G.

Show:

- (a) MINSOLVC_D \leq_p MINVC_D.
- (b) MINSOLVC_D $\leq_p \overline{\text{VC}}_D$
- (c) $MinVC_D$ is **DP**-complete
- (d) $\operatorname{VC}_D \leq_p \operatorname{MinVC}_D$ and $\overline{\operatorname{VC}}_D \leq_p \operatorname{MinVC}_D$.

Remark: You only have to show that such reductions exist.

(e) Assume that $\min VC(G)$ can be calculated in time T(|G|).

Give bounds on the time needed to decide $MINVC_D$ and $MINSOLVC_D$, resp. calculate MinVC(G).

In particular, show that, if T(n) is polynomial, then so are the other bounds.

- (f) Analogously to (e), give time bounds on the considered problems assuming that $\langle G, k \rangle \in$ MinVC_D (resp. $\langle G, k \rangle \in$ VC_D) can be decided in time T(|G|).
- (g) If $\operatorname{MinVC}_D \leq_p \operatorname{MinSolVC}_D$, then $\mathbf{PH} \subseteq \Sigma_1^p$.

Solution:

- (a) Consider the following reduction $f(\langle G, k \rangle)$ assuming input $\langle G, C \rangle$.
 - If C is not a vertex cover, then output $f(\langle G, k \rangle) := \langle G, -1 \rangle$.
 - Else, output $f(\langle G, k \rangle) := \langle G, |C| \rangle$.
- (b) We can reduce MINSOLVC_D to $\overline{\text{VC}}_D$ in polynomial-time as:

$$\langle G, C \rangle \in \text{MINSOLVC}_D$$
 iff C is a vertex cover of $G \land \langle G, |C| - 1 \rangle \in \overline{\text{VC}_D}$.

(c) We first show that $MinVC_D$ is in **DP**:

$$\langle G, k \rangle \in \operatorname{MinVC}_D$$
 iff $\langle G, k \rangle \in \operatorname{VC}_D \land \langle G, k-1 \rangle \in \overline{\operatorname{VD}}_D$.

Define therefore $L = \{ \langle G, i \rangle \mid \langle G, i - 1 \rangle \in \mathrm{VC}_D \}$, then:

$$\langle G, k \rangle \in \operatorname{MinVC}_D$$
 iff $\langle G, k \rangle \in \operatorname{VC}_D \land \langle G, k \rangle \in \overline{L}$.

Obviously, $VC_D, L \in \mathbf{NP}$.

In the lecture, you have seen that C is a cover of G iff $V \setminus C$ is an independent set of G. So:

- $\langle G, k \rangle \in \operatorname{MinVC}_D$
- iff G has a minimal vertex cover C of size exactly k
- iff G has a maximal independent set $V \setminus C$ of size exactly k
- iff the largest independent set of G has size exactly k
- iff $\langle G, |V| k \rangle \in \text{EXACTINDSET}$

So, MINVC_D and EXACTINDSET are equivalent w.r.t. polynomial-time reductions. As the latter is **DP**-complete, so is the former.

- (d) As MINVC_D is **DP**-complete and **NP** \cup **coNP** \subseteq **DP**, these reductions have to exist.
- (e) Given ⟨G, k⟩, we calculate minVC(G) in time T(|G|) and check that k = minVC(G). This amounts to run time of T(|G|) + |G|.
 - Given $\langle G, C \rangle$, we fist check in time |E| that C is a vertex cover, then we decide $\langle G, |C| \rangle \in \text{MinVC}_D$ in time at most T(|G|) + |G|. In total T(|G|) + 2|G|.
 - For a (undirected) graph G = (V, E) and a node $v \in V$, define G v as the graph we obtain from G be removing v and all edges connected to v. Note that vertex covers of G resp. G v can be transformed to a cover of the other graph by simply removing resp. adding v to the cover. In particular, if G has a minimal cover C, then for every $v \in C$ it has to hold that $C \setminus \{v\}$ is a minimal cover of G v. This leads to the following algorithm:

Given $\langle G \rangle$, we calculate minVC(G) in time T(|G|) and set $C := \emptyset$. Assume that $V = \{1, 2, ..., n\}$, i.e., fix some total order on V. Then for v = 1, 2, ..., n do:

- Calculate $k' := \min \operatorname{VC}(G v)$.
- If k' < k, i.e., k' = k 1, set k := k', G := G v, and $C := C \cup \{v\}$.

We consider every node at most once, i.e., remove every edge at most twice, leading to an upper bound of |V|T(|G|) + |E|.

So, if T(n) is polynomial, all the problems can be decided, resp. calculated in polynomial time.

Remark: Obviously, we can calculate $\min VC(G)$ in time linear in |G| from $\min VC(G)$. So, the same holds when we start from $\min VC(G)$.

(f) We first show how the time T'(n) for deciding VC_D can be bounded by the running time T(n) of MinVC_D: We have already seen in (d) that there exists a polynomial-time reduction r from VC_D to MinVC_D. Let T_r be the time needed to compute the reduction. So, $T'(|G|) \leq T(T_r(|G|))$. In particular, if T is polynomial, then also T' is polynomial.

Recall that we can also compute $\min VC(G)$ by using VC_D as an oracle for the binary search on the interval [0, |V|]. Hence, $\min VC(G)$ can be computed in time $\mathcal{O}(T'(|G|) \cdot \log |V|)$.

So, together with (e) it follows that: if either T(n) or T'(n) is polynomial, again all the other problems can also be computed/decided in polynomial time.

(g) If $\text{MINVC}_D \leq_p \text{MINSOLVC}_D$, then also $\text{MINVC}_D \leq_p \overline{\text{VC}}_D$ by (b) and transitivity of \leq_p . So, $\overline{\text{VC}}_D$ is **DP**-complete, in particular, this means $\text{VC}_D \leq_p \overline{\text{VC}}_D$ which implies $\mathbf{NP} = \mathbf{coNP}$ and, subsequently, $\boldsymbol{\Sigma}_1^p = \boldsymbol{\Sigma}_2^p = \mathbf{PH}$.

This also shows that if either $\operatorname{MinVC}_D \leq \operatorname{VC}_D$ or $\operatorname{MinVC}_D \leq \overline{\operatorname{VC}}_D$, then again the $\mathbf{NP} = \mathbf{coNP}$.

So, probably $MinVC_D$ is indeed harder to solve than the other two decision problems.

What remains is to decide if one should assume that MinSolVC_D is indeed easier to solve than $\overline{\text{VC}}_D$, or if the two problems are equivalent w.r.t. polynomial-time reductions, i.e., if $\overline{VC}_D \leq_p \text{MinSolVC}_D$ also holds.

Exercise 9.2

Let $\Phi = \{\phi_1, \ldots, \phi_m\}$ be a set of *m* Boolean expressions in the variables x_1, \ldots, x_n with the restriction that every expression involves at most 3 of these *n* variables.

Assume we choose a truth assignment u uniformly at random from $\{0,1\}^n$. Denote then by $\Pr[\phi_i]$ the probability that u satisfies ϕ_i .

- (a) Show that $\Pr[\phi_i]$ can be calculated in time polynomial in the length of ϕ_i .
- (b) Let N be the random variable which counts the number of expressions ϕ_i satisfied by the random assignment u. Show that

$$\mathbb{E}[N] = \sum_{i=1}^{m} \Pr[\phi_i].$$

(c) We write $\mathbb{E}[N \mid u_1 = 0]$ for the expected number of expressions satisfied by a random assignment u which assigns 0 to x_1 . Similarly, define $\mathbb{E}[N \mid u_1 = 1]$. Show:

$$\mathbb{E}[N] = \frac{1}{2} \cdot (\mathbb{E}[N \mid u_1 = 0] + \mathbb{E}[N \mid u_1 = 1]).$$

- (d) Show that there is always a value b s.t. $\mathbb{E}[N \mid u_1 = b] \ge \mathbb{E}[N]$.
- (e) Give now a polynomial-time algorithms which computes an assignment which satisfies at least $\mathbb{E}[N]$ expressions of Φ .

Solution:

(a) By definition, we have

$$\Pr[\phi_i] = \frac{\#\{u \in \{0,1\}^n \mid \phi_i(u) = 1\}}{2^n}.$$

Let $\operatorname{Var}(\phi_i)$ be the set of variables appearing in ϕ . By assumption, we have $\operatorname{Var}(\phi_i) \leq k := 3$ for all $i = 1, 2, \ldots, n$. As the truth value of ϕ_i is completely determined by any truth assignment for $\operatorname{Var}(\phi_i)$, we also have

$$\Pr[\phi_i] = \frac{\#\{u \in \{0,1\}^{\operatorname{Var}(\phi_i)} \mid \phi_i(u) = 1\}}{2^{|\operatorname{Var}(\phi_i)|}}$$

We there only need to evaluate every constraint ϕ_i for at most $2^k = 8$ assignments where evaluating a constraint ϕ_i can obviously be done in time polynomial in $|\phi_i|$.

(b) We may consider the constraints ϕ_i also as random variables, i.e., $\phi_i(u) = 1$ for an event $u \in \{0, 1\}^n$ if u is a satisfying assignment for ϕ_i . Hence,

$$N = \sum_{i=1}^n \phi_i \text{ and by linearity of } \mathbb{E} \ \mathbb{E}[N] = \sum_{i=1}^n \mathbb{E}[\phi_i].$$

Note that

$$\mathbb{E}[\phi_i] = 0 \cdot \Pr[\phi_i = 0] + 1 \cdot \Pr[\phi_i = 1] = \Pr[\phi_i].$$

Hence, we can calculate $\mathbb{E}[N]$ in time polynomial in $|\Phi|$.

Remark: Recall that for any Bernoulli random-variable $X \sim Bin(1, p)$ we have $\mathbb{E}[X] = Pr[X = 1] = p$.

(c) Intuitively, as we can simply separately consider the two cases $u_1 = 0$ and $u_1 = 1$ and first take the average for each of these cases:

$$\begin{split} \mathbb{E}[N] &= \sum_{u \in \{0,1\}^n} N(u) \Pr[u] \\ &= \sum_{u \in 0\{0,1\}^{n-1}} N(u) \Pr[u \mid u_1 = 0] \Pr[u_1 = 0] + \sum_{u \in 1\{0,1\}^{n-1}} N(u) \Pr[u|u_1 = 1] \Pr[u_1 = 1] \\ &= \mathbb{E}[N|u_1 = 0] \cdot 1/2 + \mathbb{E}[N|u_1 = 1] \cdot 1/2. \end{split}$$

- (d) Otherwise, the average would be smaller than $\mathbb{E}[N]$.
- (e) We now know that in time polynomial in $|\Phi|$ we can always determine a value b for x_1 s.t.

$$\mathbb{E}[N_{\Phi}] \le \mathbb{E}[N_{\Phi} \mid u_1 = b] = \mathbb{E}[N_{\Phi[x_1:=b]}],$$

i.e., if we substitute b for x_1 in Φ and simplify, the expected number of simultaneously satisfied constraints in the resulting constraint system $\Phi[x_1 := b]$ does not decrease. In particular, after n steps we have determined an assignment which satisfies at least $\mathbb{E}[N]$ constraints.

Exercise 9.3

The decision version of the *traveling salesman problem* (short TSP) is defined as follows:

Given distances $d_{ij} \ge 0$ between n cities and a bound $B \ge 0$, decide if there is a tour of the cities of length at most B.

We denote the corresponding decision problem by TSP_D , i.e.,

 $\langle d_{1,1}, \ldots, d_{n,n}, B \rangle \in \text{TSP}_D$ iff there is TSP-tour w.r.t. (d_{ij}) of length at most B.

A Hamilton path in an undirected graph G = (V, E) is a path in G which visits every node exactly once. The corresponding decision problem HAMILTONPATH_D is known to be **NP**-complete.

(a) Show that the following is polynomial-time reduction from HP_D to TSP_D :

Given G = (V, E) with n = |V| and assume that $V = \{1, 2, ..., n\}$. Set $d_{i,j} := 1$ if the nodes *i* and *j* are connected by some edge, otherwise $d_{i,j} := n + 1$. Further, set B := 2n.

- (b) We call a TSP-instance $\langle d_{1,1}, \ldots, d_{n,n}, B \rangle$ metric if $d_{ij} \leq d_{ik} + d_{kj}$ holds for all i, j, k.
 - Give an example of a graph G where the TSP-instance produced by the reduction above is not metric.
 - Modify the reduction such that it always yields a metric TSP-instance.
- (c) The following algorithm for approximating the optimal solution of a <u>metric</u> TSP is by Christofides:

First, compute a minimal spanning tree $T = (V_T, E_T)$ of the complete graph K_n with distance matrix (d_{ij}) . Let O be the nodes of T which have odd degree (w.r.t. T!). Consider now the complete graph K_O consisting only of these nodes O, and calculate a minimal matching M for it, i.e., find a subset M of the edges of K_O s.t. every node is connected to exactly one other node (no loops) and the total weight of M, i.e., $\sum_{(i,j)\in M} d_{ij}$, is minimal. Add now the edges M to T yielding a multigraph G, i.e., assume that the original edges of T are colored black, while those of M are colored red. Still, the weight of an edge (i, j) in G which uses every edge, both black and red, of G exactly once. The approximation is then the tour embedded in the Eulerian walk.

- Convince yourself that every step of the algorithm by Christofides can be implemented in polynomial time (look it up on the Internet).
- Apply the algorithm by Christofides to the following example:

The coordinates of the inner nodes are $R \cdot (\cos \frac{k \cdot 2\pi}{n}, \sin \frac{k \cdot 2\pi}{n})$, for the outer nodes $(R + c) \cdot (\cos \frac{k \cdot 2\pi}{n}, \sin \frac{k \cdot 2\pi}{n})$ where $n = 6, k = 1, 2, \dots, 6, R = 2cm, c = 0.5cm$. Distances are given by the Euclidean norm if there is an edge, otherwise ∞ .

• Try to show that Christofides' algorithm always yields a tour which is at most 50% longer than the optimal tour for a metric TSP-instance.