Solution

Computational Complexity - Homework 6

Discussed on 30.05.2016.

Exercise 6.1

You have seen that 2SAT is in NL. Show that 2SAT is also NL-hard.

Solution: Since REACHABILITY is NL-hard and we know that NL is closed under complement, it suffices to show that there exists a logspace reduction from $\overline{\text { REACHABILITY }}$ to 2 SAT . Suppose that we are given a graph $\mathcal{G}=\langle V, E\rangle$, an initial vertex v_{0} and a target vertex v_{f}. From this we assign a variable x_{v} to each node in V and then construct $\phi_{\mathcal{G}}:=\bigwedge_{\left(v_{1}, v_{2}\right) \in E}\left(x_{v_{1}} \rightarrow x_{v_{2}}\right)$ (where $x_{v_{1}} \rightarrow x_{v_{2}}$ is $\left.\neg x_{v_{1}} \vee x_{v_{2}}\right)$. Finally we take the result of the reduction to be $\psi_{\mathcal{G}}:=x_{v_{0}} \wedge x_{v_{f}} \wedge \phi_{\mathcal{G}}$.
$\psi_{\mathcal{G}}$ is a 2 SAT instance and can be constructed in logspace (in the size of the reachability problem instance). Indeed the construction can be carried out in constant space: we can reuse the node IDs as variable IDs and in particular $\phi_{\mathcal{G}}$ is just a rewriting of E (copying node IDs from a pairs $\left(v_{1}, v_{2}\right)$ and adding the appropriate Boolean operators.

It just remains to check that v_{f} is NOT reachable from v_{0} iff $\psi_{\mathcal{G}}$ is SAT. For this it suffices to show that (i) if a valuation satisfies $x_{v_{0}} \wedge \phi_{\mathcal{G}}$ it must set x_{v} to true for all v reachable from v_{0}, and (ii) if a node v is unreachable from v_{0}, then there exists a valuation satisfying $x_{v_{0}} \wedge \phi_{\mathcal{G}}$ that sets x_{v} to false for every unreachable node v.

To prove (i) argue by induction on the number of steps to reach v from v_{0}. To prove (ii) take the valuation that sets x_{v} to true if v is reachable and false otherwise. Assume for contradiction that this is not a satisfying valuation. Since v_{0} is trivially reachable it follows that there is a clause $x_{v_{1}} \rightarrow x_{v_{2}}$ in $\phi_{\mathcal{G}}$ such that $x_{v_{1}}$ is set to true but $x_{v_{2}}$ is set to false. But if this clause exists, $\left(v_{1}, v_{2}\right) \in E$ and by the definition of valuation v_{1} is reachable whilst v_{2} is not, which is a contradiction.

Exercise 6.2

Show that deciding the inequivalence of context-free grammars over one-letter terminal alphabet is Σ_{2}^{p}-hard. You can make use of Σ_{2}^{p}-hardness of integer expression inequivalence.

What does it imply for the equivalence problem?

Exercise 6.3

Under the assumption that $3 \mathrm{SAT} \leq_{p} \overline{3 \mathrm{SAT}}$ show that $\mathbf{N P}=\mathbf{P H}$.

Solution: If $3 \mathrm{SAT} \leq_{p} \overline{3 \mathrm{SAT}}$, then $\mathbf{N P}=\mathrm{coNP}$, i.e., $\boldsymbol{\Sigma}_{1}^{p}=\boldsymbol{\Pi}_{1}^{p}$. Consider now any $L \in \boldsymbol{\Sigma}_{2}^{p}$. We have

$$
x \in L \text { iff } \exists u \in\{0,1\}^{p(|x|)} \forall u \in\{0,1\}^{q(|x|)}: M(x, u, v)=1
$$

The language

$$
L_{1}\{(x, u) \mid \forall v: M(x, u, v)=1\}
$$

is then in coNP and, thus, in NP, i.e., we find a TM M^{\prime} and a polynomial r, s.t.,

$$
(x, u) \in L_{1} \text { iff } \exists v \in\{0,1\}^{r(|x|+|u|)}: M^{\prime}(x, u, v)=1
$$

As $|u|=p(|x|)$, we may assume that $|v|=r(|x|)$ by adjusting r.
Hence,

$$
x \in L \text { iff } \exists u v \in\{0,1\}^{p(|x|)+r(|x|)}: M^{\prime}(x, u v)=1,
$$

i.e., $L \in \mathbf{N P}$.

So, $\boldsymbol{\Sigma}_{2}^{p} \subseteq \mathbf{N P}=\mathrm{coNP}$. Similarly, $\boldsymbol{\Pi}_{2}^{p} \subseteq \mathbf{N P}=\mathrm{coNP}$.
Using induction, one now shows that $\mathbf{N P}=\mathbf{P H}$.

Exercise 6.4

Apart from the certificate definition and the alternative bounded alternating Turing machine characterization, there is one more standard characterization of the polynomial hierarchy via oracles.

For a language L, an oracle machine M^{L} is a Turing machine which can moreover do the following kind of computation steps. It can write down a word w on a special tape and ask whether $w \in L$ and it immediately receives the correct answer. One can also talk about this machine even when the oracle is not specified, then we write $M^{\text {? }}$.

Example: In Exercise 3.4 (a), you have constructed an example of $M^{S A T}$ where $M^{?}$ is a polynomial time TM.

- Prove or disprove: for every $M^{?}$, if $A \subseteq B$ then $\mathcal{L}\left(M^{A}\right) \subseteq \mathcal{L}\left(M^{B}\right)$.
- Prove or disprove: if $A \subseteq B$ then $\mathbf{P}^{A} \subseteq \mathbf{P}^{B}$ (as classes).

The polynomial hierarchy can be defined inductively setting $\Sigma_{0}^{p}=\Pi_{0}^{p}=\mathbf{P}$ and

$$
\begin{gathered}
\Sigma_{i+1}^{p}=\mathbf{N} \mathbf{P}^{\Sigma_{i}^{p}} \\
\Pi_{i+1}^{p}=\mathbf{c o}-\mathbf{N P}^{\Sigma_{i}^{p}}
\end{gathered}
$$

where A^{B} is the set of decision problems solvable by a Turing machine in class A with an oracle for some complete problem in class B.

- Show this yields the same hierarchy as the original definition.

One can also define $\Delta_{i+1}^{p}=\mathbf{P}^{\Sigma_{i}^{p}}$ and show that $\Delta_{i+1}^{p} \subseteq \Sigma_{i+1}^{p} \cap \Pi_{i+1}^{p}$ and it contains all languages expressible as Boolean combinations (unions, intersections, complements) of languages of Σ_{i}^{p} and Π_{i}^{p}.

- What is the relationship of these classes to $\mathbf{D P}=\{L \mid \exists M, N \in \mathbf{N P}: L=M \backslash N\}$?

