
Technische Universität München (I7) Summer term 2016
Prof. J. Křet́ınský / Dr. C.H. Broadbent 3 May 2016

Computational Complexity – Homework 4

Discussed on 9 May 2016.

Exercise 4.1

Let us denote DP = {L | ∃M,N ∈ NP : L = M \N} the class of languages that are diferences of two NP
languages.

(a) Show that C = {〈G1, k1, G2, k2〉 | G1 has a k1-clique and G2 does not have any k2-clique} is DP-
complete.

(b) Show that MAX −CLIQUE = {〈G, k〉 | the largest clique of G is of size exactly k} is DP-complete.

(c) It is unknown whether MAX − CLIQUE is in NP. Show that if P = NP then MAX − CLIQUE
is in NP and a largest clique can be found in polynomial time.

Exercise 4.2

(a) Assume that P=NP. Show that then EXP=NEXP.

Remark : Assume that L is decided by some TM running in time T (n) with T (n) time-constructible
and T (n) ∈ O(2n

c

) for some c ≥ 1. Show that then

Lpad := {x10T (|x|)1 | x ∈ L} ∈ NP.

*(b) Show that also EXP=NEXP if only every unary NP-language is also in P.

Remark : For x ∈ {0, 1}∗ let 〈x〉 be the natural number represented by x assuming lsbf. Given a
language L which is decided in time T (n) (with T (n) time-constructable) show that

Lupad = {1〈x10
|T (n)|1〉 | x ∈ L} ∈ NP

with |T (n)| (≈ dlog T (n)e) the length of the lsbf representation of T (n).

Exercise 4.3

Say that A is linear-time reducible to B if there is function f computable in time O(n) such that x ∈ A⇔
f(x) ∈ B.

• Show that there is no P-complete problem w.r.t. linear-time reductions.

Hint : Use the time hierarchy theorem for DTIME.

Exercise 4.4

A two-person game consists of a directed graph G = (V0, V1, E) (called the game graph) whose nodes
V := V0 ∪ V1 are partitioned into two sets and a winning condition. We assume that every node v ∈ V has
a successor. The two players are called for simplicity player 0 and player 1. A play of the two is any finite
or infinite path v1v2 . . . in G where v1 is the starting node. If the play is currently in node vi and vi ∈ V0,
then we assume that it is the turn of player 0 to choose vi+1 from the successors of vi; if vi ∈ V1, player 1
determines the next move. The winning condition defines when a play is won by player 0. E.g.:

• In a reachability game the winning condition is simply defined by a subset T ⊆ V0 ∪ V1 (targets) of
the nodes of G, and a play is won by player 0 if it visits T within n − 1 moves (where n is the total
number of nodes of G). Hence, player 1 wins a play if he can avoid visiting T for at least n− 1 moves.

• In a revisiting game player 0 wins a play v1v2 . . . if the first node vi which is visited a second time
belongs to player 0, i.e., vi ∈ V0; otherwise player 1 wins the play.

We say that player i wins node s if he can choose his moves in such a way that he wins any play starting
in s.

Example : Consider the following game graph where nodes of V0 (V1) are of circular (rectangular) shape:

0

1

2

3

4

5

In the reachability game with T = {5} player 0 can win node 4: if player 1 moves from 4 to 5, player 0
immediately wins; if player 1 moves from 4 to 2, then player 0 can win again by moving from 2 to 5. On
the other hand, player 1 can win node 0 by choosing to always play from 0 to 1 and from 3 to 1.

In the revisiting game played on the same game graph, player 0 can win node 2: he moves from 2 to 5 and
then on to 4; no matter how player 1 then chooses to move, the play will end in an already visited node
which belongs to player 0. Player 1 can e.g. win node 3 by simply moving to node 1.

(a) Consider a reachability game:

Show that one can decide in time polynomial in 〈G, s, T 〉 if player 0 can win node s.

Hint : Starting in T compute the set of nodes from which player 0 can always reach T no matter how
player 1 chooses his moves.

(b) Consider a revisiting game:

Show that it is PSPACE-complete to decide for a given game graph G and node s if player 0 can
win s.

Remarks :

• A game is called determined if every node if won by one of the two players.

Are reachability, resp. revisiting games determined?

• Assume that we change the definition of reachability game by dropping the restriction on the number
of moves, i.e., player 0 wins a play if the play eventually reaches a state in T .

Does this change the nodes player 0 can win for a given game graph?

Exercise 4.5

An alternating Turing machine (ATM) M = (Γ, Q∀, Q∃, δ0, δ1) is an NDTM (Γ, Q∀ ∪Q∃, δ0, δ1) except that
(i) the control states are partitioned into sets Q∀ and Q∃ and (ii) the acceptance condition is defined as

follows:

Consider the configuration graph G(M,x). We extend the partition of the control states to the
configurations (nodes) of GM ;x: a configuration is in V0 if its control state is in Q∃; otherwise
it is in V1. We then can consider the reachability game played on G(M,x) by the players 0 and
1 where the target set is the set of accepting configurations. M accepts x iff player 0 wins the
initial configuration in this reachability game. (For the sake of completeness, assume that every
halting/accepting configuration is its unique successor.)

Example : Consider the following configuration graphs where accepting configurations have a second circle/rec-
tangle drawn around them. In the left graph the corresponding ATM accepts the input while it rejects the
input in the right example:

∀

∃ ∀

∃ ∀ ∃ ∀

∀

∃ ∀

∃ ∀ ∃ ∀

A language is decided by an ATM M if M accepts every x ∈ L and rejects any x 6∈ L. The time and space
required by an ATM is the time and space required by the underlying NDTM.

The class AP consists of all languages L which are decided by an ATM M running in time T (n) ∈ O(nk)
for some k ≥ 1.

(a) An existential (universal) ATM is an ATM with Q∀ = ∅ (Q∃ = ∅).

Show that any language L ∈ AP which is decided by an existential (universal) ATM is in NP (coNP).

(b) Define coAP as usual: L ∈ coAP iff L ∈ AP.

Show or disprove that AP = coAP.

(c) Show that QBF is in AP.

(d) Show that any L ∈ AP is in PSPACE.

Remark : Adapt the recursive decision procedure for QBF ∈ PSPACE you have seen in the lecture.

Remark : Similarly as AP=PSPACE, one can show APSPACE=EXPTIME.

