
Technische Universität München (I7) Summer term 2016
Prof. J. Křet́ınský / Dr. C.H. Broadbent 3 May 2016

Solution

Computational Complexity – Homework 4

Discussed on 9 May 2016.

Exercise 4.1

Let us denote DP = {L | ∃M,N ∈ NP : L = M \N} the class of languages that are diferences of two NP
languages.

(a) Show that C = {〈G1, k1, G2, k2〉 | G1 has a k1-clique and G2 does not have any k2-clique} is DP-
complete.

(b) Show that MAX −CLIQUE = {〈G, k〉 | the largest clique of G is of size exactly k} is DP-complete.

(c) It is unknown whether MAX − CLIQUE is in NP. Show that if P = NP then MAX − CLIQUE
is in NP and a largest clique can be found in polynomial time.

Solution:

(a) Let us define

C1 := {〈G1, k1, G2, k2〉 |G1 has a k1-clique and G2 is any graph and k2 ≥ 0}

and

C2 := {〈G1, k1, G2, k2〉 |G2 has a k2-clique and G1 is any graph and k1 ≥ 0}

Both these languages are NP-complete as we have already seen (they are both just the clique problem
with unconstrained extra data attached to each)

Then C = C1 C2 and so C ∈ DP .

Now we show that C is DP -hard. Suppose that L ∈ DP . It must be the case that L = L1 L2 where
L1, L2 ∈ NP (by definition). By the NP-completeness of the clique problem, we must thus have
polynomial-time reductions f1 and f2 from L1 and L2 to respectively to the clique problem.

Thus we can define a polynomial-time reduction f from L to C by:

f(w) := 〈f1(w), f2(w)〉

This is clearly computable in polynomial time (since both f1(w) and f2(w) are), and moreover we have
w ∈ L iff f(w) ∈ C since w ∈ L, iff w ∈ L1 and w /∈ L2, iff f1(w) ∈ CLIQUE and f2(w) /∈ CLIQUE
(since f1 and f2 are reductions to CLIQUE), iff f(w) ∈ C.

(b) To see that MAX-CLIQUE is in DP , observe that the problem CLIQUE+ := {〈G, k〉 |G has a k +
1clique} is in NP. It is then the case that MAX-CLIQUE is equal to CLIQUE CLIQUE+.

To show that MAX-CLIQUE is DP-hard, we show that there is a polynomial time reduction from C
(in the previous part) to MAX-CLIQUE.

Consider a tuple 〈G1, k1, G2, k2〉. We define a pair 〈G, k〉 that can be computed from the tuple in
polynomial time such that 〈G1, k1, G2, k2〉 ∈ C iff 〈G, k〉 ∈ MAX − CLIQUE .

Let N1, N2 be respectively the node sets of G1 and G2 and E1, E2 their respective edge relations. Let
Kk′ be the clique of size k′.

Consider first the graph G′1 := (N ′1, E
′
1), where N ′1 := [1, k1] × N1 and E′1 := {((i, u), (i + 1, v) | i ∈

[1, k1) and (u, v) ∈ E1}. By construction, no clique of G′1 can be bigger than k1, and it will have a
clique of size k1 iff G1 also has a clique of size k1.

For r ∈ N, we extend G′1 to a graph Gr
1 by adding an instance of Kr and then an edge from each node

in this instance of Kr to each node in the original G′1. The graph Gr
1 will now have a clique of size

k1 + r iff G1 has a clique of size k1, and moreover no clique of Gr
1 can be bigger than k1 + r. That is,

G1 has a clique of size k1, iff the maximum-sized clique in Gr
1 has size k1 + r.

We now define the graph Gr
2 (i) first in a similar way to Gr

1, replacing k1 with k2, N1 with N2 and E1

with E2, and then in addition (ii) adding a fresh disjoint instance Kk2+r−1.

It will then be the case that G2
r has a (k2 + r)-clique iff G2 has a k2-clique. Moreover, it is certain

that gr2 has a k2 + r − 1 sized clique and that it has no clique larger than k2 + r. Thus the maximal
clique of G2

r has size k2 + r iff G2 has a k2-clique.

If k1 > k2 we can thus take G′ := G0
1 ×G

k1−k2
2 , and otherwise G′ := Gk2−k1

1 ×G0
2.

Exercise 4.2

(a) Assume that P=NP. Show that then EXP=NEXP.

Remark : Assume that L is decided by some TM running in time T (n) with T (n) time-constructible
and T (n) ∈ O(2n

c

) for some c ≥ 1. Show that then

Lpad := {x10T (|x|)1 | x ∈ L} ∈ NP.

*(b) Show that also EXP=NEXP if only every unary NP-language is also in P.

Remark : For x ∈ {0, 1}∗ let 〈x〉 be the natural number represented by x assuming lsbf. Given a
language L which is decided in time T (n) (with T (n) time-constructable) show that

Lupad = {1〈x10
|T (n)|1〉 | x ∈ L} ∈ NP

with |T (n)| (≈ dlog T (n)e) the length of the lsbf representation of T (n).

Solution: Let L ∈ NEXP be decided the NTM by N in time T (n) ∈ O(2n
c

) for some c ≥ 1. Further, let
MT be the TM that computes x 7→ lsbf(T (|x|)) in time T (|x|).

We claim Lpad ∈ NP: (If a “check” fails, we reject the input.)

• On input y = 1m first compute w = lsbf(m).

• Then check that w = z10k1 for some z ∈ {0, 1}∗ and k ∈ N.

• Next, simulate MT on input z for exactly 2k+1 steps and check that the halting configuration is
reached.

Note that
m = 〈w〉 = 〈z10k1〉 ≥ 〈0k1〉 = 2k+1.

• As MT terminates, its output is lsbf(T (|z|)). Check that k = |T (|z|)|.

• Now simulate N on z for exactly 2k+1 steps. As

2k+1 = 2|T (n)|+1 ≥ T (n)

the simulation reaches the halting configuration and therefore decides whether z ∈ L or not.

As we assume that every unary language in NP is also in P, we also find a TM M which decides Lpad in
polynomial time. From M we obtain a TM M ′ which decides L in EXP:

• For input x (n = |x|) first compute lsbf(T (n)) in time T (n).

• Then generate w = x10|T (n)|1 in time n+ 2 + |T (n)| = n+ 2 + dlog T (n)e.

• Finally, generate y = 1〈w〉. Note that

|y| = 〈w〉 = 〈x10|T (n)|1〉 ≤ 〈0|w|1〉 = 2|w|+1 = 22+n+|T (n)|+1 ≤ 2n+4 · T (n).

• Now use M ′ to decide whether y ∈ Lpad or not.

Exercise 4.3

Say that A is linear-time reducible to B if there is function f computable in time O(n) such that x ∈ A⇔
f(x) ∈ B.

• Show that there is no P-complete problem w.r.t. linear-time reductions.

Hint : Use the time hierarchy theorem for DTIME.

Exercise 4.4

A two-person game consists of a directed graph G = (V0, V1, E) (called the game graph) whose nodes
V := V0 ∪ V1 are partitioned into two sets and a winning condition. We assume that every node v ∈ V has
a successor. The two players are called for simplicity player 0 and player 1. A play of the two is any finite
or infinite path v1v2 . . . in G where v1 is the starting node. If the play is currently in node vi and vi ∈ V0,
then we assume that it is the turn of player 0 to choose vi+1 from the successors of vi; if vi ∈ V1, player 1
determines the next move. The winning condition defines when a play is won by player 0. E.g.:

• In a reachability game the winning condition is simply defined by a subset T ⊆ V0 ∪ V1 (targets) of
the nodes of G, and a play is won by player 0 if it visits T within n − 1 moves (where n is the total
number of nodes of G). Hence, player 1 wins a play if he can avoid visiting T for at least n− 1 moves.

• In a revisiting game player 0 wins a play v1v2 . . . if the first node vi which is visited a second time
belongs to player 0, i.e., vi ∈ V0; otherwise player 1 wins the play.

We say that player i wins node s if he can choose his moves in such a way that he wins any play starting
in s.

Example : Consider the following game graph where nodes of V0 (V1) are of circular (rectangular) shape:

0

1

2

3

4

5

In the reachability game with T = {5} player 0 can win node 4: if player 1 moves from 4 to 5, player 0
immediately wins; if player 1 moves from 4 to 2, then player 0 can win again by moving from 2 to 5. On
the other hand, player 1 can win node 0 by choosing to always play from 0 to 1 and from 3 to 1.

In the revisiting game played on the same game graph, player 0 can win node 2: he moves from 2 to 5 and
then on to 4; no matter how player 1 then chooses to move, the play will end in an already visited node
which belongs to player 0. Player 1 can e.g. win node 3 by simply moving to node 1.

(a) Consider a reachability game:

Show that one can decide in time polynomial in 〈G, s, T 〉 if player 0 can win node s.

Hint : Starting in T compute the set of nodes from which player 0 can always reach T no matter how
player 1 chooses his moves.

(b) Consider a revisiting game:

Show that it is PSPACE-complete to decide for a given game graph G and node s if player 0 can
win s.

Remarks :

• A game is called determined if every node if won by one of the two players.

Are reachability, resp. revisiting games determined?

• Assume that we change the definition of reachability game by dropping the restriction on the number
of moves, i.e., player 0 wins a play if the play eventually reaches a state in T .

Does this change the nodes player 0 can win for a given game graph?

Solution:

(a) Let
A0(X) := {v ∈ V0 | vE ∩X 6= ∅} ∪ {v ∈ V1 | vE ⊆ X}.

and
W0 :=

⋃
k≥0

Ak
0(T).

Note that A0(X) can be computed in time |V ||E| and W0 in time |V |2|E| as we can include at most
|V | many nodes.

Induction on k shows that player 0 can win any node in Ak
0(T) by simply playing to some node in

Ak−1
0 (T). Any such play has trivially length at most n− 1 (assuming T is not empty).

Consider any node v 6∈ W0 and consider any play from v which reaches T . There is some smallest
i such that vi 6∈ W0 and vi+1 ∈ W0. As player 0 can win anny node in W0, we can assume that
the remaining play stays in W0. If vi was in V0, then by definition of A0(W) we also would have
vi ∈ A0(W0) = W0. So, vi ∈ V1 ∩W0. Hence, player 1 can find a successor of vi which is not contained
in W0, i.e., player 1 can always evade entering W0 ⊃ T .

W0 is therefore the set of nodes which player 0 can win and V \W0 is the set of nodes which player 1
can win. In particular, reachability games are determined. Note that we didn’t really use the restriction

(b) v is won by player 0 iff we do not find a play which is won by player 1. Any play has length at most n.
So, for a given node v, we can enumerate all possible plays in polynomial space and, hence, decided
whether v is won by player 0.

In order to see that the revisiting game is PSPACE-complete, one simply has to check that the
reduction of Qbf to the game of geography also works for the revisiting game.

One can also show that the revisiting game is determined: Consider the enlarged game graph, where
nodes correspond to plays of length at most n. We have an edge from v1v2 . . . vk to v1v2 . . . vkvk+1 iff

(vk, vk+1) ∈ E. Set now as target set the sequences which revisit a node of V0 for the first time. Then
player 0 wins v in the revisiting game on the original game graph iff he wins v in the reachability game
on the enlarged game graph with target set T . As the reachability game is determined, the revisiting
game is determined too.

Exercise 4.5

An alternating Turing machine (ATM) M = (Γ, Q∀, Q∃, δ0, δ1) is an NDTM (Γ, Q∀ ∪Q∃, δ0, δ1) except that
(i) the control states are partitioned into sets Q∀ and Q∃ and (ii) the acceptance condition is defined as
follows:

Consider the configuration graph G(M,x). We extend the partition of the control states to the
configurations (nodes) of GM ;x: a configuration is in V0 if its control state is in Q∃; otherwise
it is in V1. We then can consider the reachability game played on G(M,x) by the players 0 and
1 where the target set is the set of accepting configurations. M accepts x iff player 0 wins the
initial configuration in this reachability game. (For the sake of completeness, assume that every
halting/accepting configuration is its unique successor.)

Example : Consider the following configuration graphs where accepting configurations have a second circle/rec-
tangle drawn around them. In the left graph the corresponding ATM accepts the input while it rejects the
input in the right example:

∀

∃ ∀

∃ ∀ ∃ ∀

∀

∃ ∀

∃ ∀ ∃ ∀

A language is decided by an ATM M if M accepts every x ∈ L and rejects any x 6∈ L. The time and space
required by an ATM is the time and space required by the underlying NDTM.

The class AP consists of all languages L which are decided by an ATM M running in time T (n) ∈ O(nk)
for some k ≥ 1.

(a) An existential (universal) ATM is an ATM with Q∀ = ∅ (Q∃ = ∅).

Show that any language L ∈ AP which is decided by an existential (universal) ATM is in NP (coNP).

(b) Define coAP as usual: L ∈ coAP iff L ∈ AP.

Show or disprove that AP = coAP.

(c) Show that QBF is in AP.

(d) Show that any L ∈ AP is in PSPACE.

Remark : Adapt the recursive decision procedure for QBF ∈ PSPACE you have seen in the lecture.

Remark : Similarly as AP=PSPACE, one can show APSPACE=EXPTIME.

Solution:

(a) -

(b) As reachability games are determined, player 0 does not win the initial configuration iff player 1 wins
the initial configuration. As the game graph is acyclic, this means that player 1 can force any play from
the initial configuration to a rejecting configuration. Swapping 0 and 1 and rejecting and accepting,
we therefore obtain an ATM for L.

(c) The ATM reads the formula from left to right. Its control state is universal iff it reads an universal
quantifiers. For every quantifier read, the ATM guesses a truth value. Finally, it simply evaluates the
formula on the guessed truth assignment in polynomial time.

(d) If L ∈ AP, then there must exist a polynomial time bounded Turing Machine M recognising L. Say
that this time bound is given by T (n) where n is the size of the input. Given a word w, M accepts w
iff there is an alternating run-tree of M when given input w. We may assume w.l.o.g. that all branches
of all run-trees of M have length at most T (|w|) (if need be a counter can be added to ensure the
machine always terminates after T (|w|) steps).

We can construct a machine M̂ that exhaustively searches for such a run-tree using a depth-first search.
Note that a configuration of M can be represented as a pair (q, s) (control-state, tape contents) in
polynomial space (in polynomially many steps, one can only fill polynomially many cells of the tape).

We can then define a recursive procedure accepting(q, s) that returns true iff there exists an accepting-
run tree of M from (q, s) (assuming the input w) and otherwise returns false. Since paths in a run-tree
of M are at most length T (|w|), the call-stack of this recursive procedure will have height at most
T (|w|) and so the procedure can run in time O(T (|w|)2.

• If q is accepting, return true, if (q, s) has no successor configuration and q is not accepting, return
false.

• If q is an ∃-state, return δ0(q, s) ∨ δ1(q, s).

• If q is a ∀-state, return δ0(q, s) ∧ δ1(q, s).

We can then define M̂ to be the machine computing accepting(q0, s0), where (q0, s0) is the initial
configuration of M .

