Computational Complexity – Homework 1

Discussed on Monday 18.04.2016.

Exercise 1.1

Recall the definition of the Landau notation for $f, g: \mathbb{N} \to \mathbb{N}$:

 $\begin{array}{ll} f \in \mathcal{O}(g) & :\Leftrightarrow & \exists c \in (0,\infty) \exists n_0 \in \mathbb{N} \forall n > n_0 \, : \, f(n) \leq c \cdot g(n). \\ f \in \Omega(g) & :\Leftrightarrow & g \in \mathcal{O}(f) \\ f \in \Theta(g) & :\Leftrightarrow & f \in \mathcal{O}(g) \wedge f \in \Omega(g) \\ f \in o(g) & :\Leftrightarrow & \forall \epsilon \in (0,\infty) \exists n_0 \in \mathbb{N} \forall n > n_0 \, : \, f(n) \leq \epsilon \cdot g(n) \\ f \in \omega(g) & :\Leftrightarrow & g \in o(f). \end{array}$

Remark: Some authors prefer to write $f = \mathcal{O}(g)$ instead of $f \in \mathcal{O}(g)$. As $\mathcal{O}(g)$ is set of functions, while f is a function, the latter is more precise than the former.

- (a) Assume f, g are strictly positive functions, i.e., f(n), g(n) > 0 for all $n \in \mathbb{N}$. Show or disprove:
 - $f \in \Theta(g)$ if and only if there exist $c_1, c_2 \in (0, \infty)$ such that $c_1 \leq f(n)/g(n) \leq c_2$ for almost all $n \in \mathbb{N}$. ("almost all" is equivalent to "except for finitely many").
 - $f \in o(g)$ if and only if $\lim_{n \to \infty} f(n)/g(n) = 0$.
- (b) Let f and g be any two of the following functions. Describe their relation using the Landau notation.

 $\begin{array}{ll} (a) n^2 & (b) n^3 & (c) n^2 \log n \\ (d) 2^n & (e) n^n & (f) n^{\log n} \\ (g) 2^{2^n} & (h) 2^{2^{n+1}} & (j) n^2 \text{ if } n \text{ is odd}, 2^n \text{ otherwise.} \end{array}$

(c) Describe (and prove) the relations between $2^{\mathcal{O}(n)}$, $\mathcal{O}(2^n)$ and $2^{n^{\mathcal{O}(1)}}$.

Exercise 1.2

For a, b, c positive integers with $c \ge 2$ show or disprove that

$$a2^{n \cdot b \cdot c^n} \in 2^{2^{O(n)}}$$

Exercise 1.3

Consider the following language on $\{0, 1\}$:

$$L = \{u0v0w \in \{0,1\}^* \mid u, v, w \in \{1\}^* \land |v| \le |w| \le |u| \land \exists k \in \{|v|, \dots, |w|\} : k \text{ divides } |u|\}.$$

Its characteristic function f_L is then

$$f_L : \{0,1\}^* \to \{0,1\} : x \mapsto \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

Construct a Turing machine which computes f_L in time $\mathcal{O}(n^k)$ for some fixed k > 0.

Exercise 1.4

If $f : \{0,1\}^* \to \{0,1\}$ is computable by a TM with a finite alphabet Γ then it is also computable by a TM with alphabet $\Sigma = \{0,1,\Box, \triangleright\}$, moreover, with only a polynomial overhead.

Prove the statement above. Does the same hold for infinite Γ ? Does the same hold for $\Sigma = \{1, \Box, \rhd\}$?

Exercise 1.5

Call a Turing machine M oblivious if the positions of its heads at the i^{th} step of its computation on input x depend only on i and |x|, but not x itself.

Let $L \in \mathbf{DTIME}(T)$ with $T : \mathbb{N} \to \mathbb{N}$ time-constructible. Show that there is an oblivious Turing machine which decides L in time $O(T^2)$.

Exercise 1.6*

Let M be a Turing machine with a (read only) input tape and one combined work/output tape. We assume that M decides a language $L \subseteq \{0, 1\}^*$, i.e., every computation of M on an input $x \in \{0, 1\}^*$ terminates eventually and after terminating the left-most position of the work tape will either be 1 if $x \in L$ or 0 if $x \notin L$.

We further assume that M never writes any "blank" \Box . The space s(x) used by M when processing an input x is then simply the number of non-blank symbols on the work/output tape after the computation of M on x has terminated.

(a) A reduced configuration is defined to be any tuple we obtain from any configuration of M by forgetting about the input tape, i.e., a reduced configuration only remembers the control state and the contents and head positions of the k work tapes. Given an input x, let $C_i(x)$ be the set of all configurations of the computation of M on x for which the input head reads the i^{th} input symbol x_i . Let $R_i(x)$ be the set of reduced configurations we obtain from $C_i(x)$.

Let $x = x_1 x_2 \dots x_n$ be an input of length n such that for any input y of length at most n-1 we have s(y) < s(x).

• Show that $R_i(x) = R_j(x)$ for $1 \le i < j \le n$ implies that $x_i \ne x_j$.

Hint: Assume that $R_i(x) = R_j(x)$ and $x_i = x_j$ for some $1 \le i < j \le n$. Consider then the input $y = x_1 \dots x_i x_{j+1} \dots x_n$, i.e., we obtain y from x by canceling the symbols on positions $i + 1, \dots, j$. For this input one can show that

 $R_k(y) \subseteq R_k(x)$ for $1 \le k \le i$, resp. $R_k(y) \subseteq R_{k+(j-i)}(x)$ for $i < k \le n - (j-i)$. (Proof?)

Show that this property entails the contradiction that M requires less than s(x) space for processing x.

(b) Set $f(n) := \max\{s(x) \mid x \in \{0, 1\}^n\}$ and assume that f(n) is unbounded.

• Show that $f(n) \not\in o(\log \log n)$.

Hint: Use the result of (a) to get an upper bound on n depending only on f(n).