Computational Complexity - Homework 1

Discussed on Monday 18.04.2016.

Exercise 1.1

Recall the definition of the Landau notation for $f, g: \mathbb{N} \rightarrow \mathbb{N}$:

$$
\begin{array}{ll}
f \in \mathcal{O}(g) & : \Leftrightarrow \quad \exists c \in(0, \infty) \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \leq c \cdot g(n) . \\
f \in \Omega(g) & : \Leftrightarrow g \in \mathcal{O}(f) \\
f \in \Theta(g) & : \Leftrightarrow \\
f \in o(g) & : \Leftrightarrow \quad \forall \epsilon \in \mathcal{O}(g) \wedge f \in \Omega(g) \\
f \in \omega(g) & : \Leftrightarrow \\
f \in o(f) .
\end{array}
$$

Remark: Some authors prefer to write $f=\mathcal{O}(g)$ instead of $f \in \mathcal{O}(g)$. As $\mathcal{O}(g)$ is set of functions, while f is a function, the latter is more precise than the former.
(a) Assume f, g are strictly positive functions, i.e., $f(n), g(n)>0$ for all $n \in \mathbb{N}$. Show or disprove:

- $f \in \Theta(g)$ if and only if there exist $c_{1}, c_{2} \in(0, \infty)$ such that $c_{1} \leq f(n) / g(n) \leq c_{2}$ for almost all $n \in \mathbb{N}$. ("almost all" is equivalent to "except for finitely many").
- $f \in o(g)$ if and only if $\lim _{n \rightarrow \infty} f(n) / g(n)=0$.
(b) Let f and g be any two of the following functions. Describe their relation using the Landau notation.
(a) n^{2}
(b) n^{3}
(c) $n^{2} \log n$
(d) 2^{n}
(e) n^{n}
(f) $n^{\log n}$
(g) $2^{2^{n}}$
(h) $2^{2^{n+1}}$
(j) n^{2} if n is odd, 2^{n} otherwise.
(c) Describe (and prove) the relations between $2^{\mathcal{O}(n)}, \mathcal{O}\left(2^{n}\right)$ and $2^{n^{\mathcal{O}(1)}}$.

Exercise 1.2

For a, b, c positive integers with $c \geq 2$ show or disprove that

$$
a 2^{n \cdot b \cdot c^{n}} \in 2^{2^{O(n)}}
$$

Exercise 1.3

Consider the following language on $\{0,1\}$:

$$
L=\left\{u 0 v 0 w \in\{0,1\}^{*}\left|u, v, w \in\{1\}^{*} \wedge\right| v|\leq|w| \leq|u| \wedge \exists k \in\{|v|, \ldots,|w|\}: k \text { divides }| u \mid\right\}
$$

Its characteristic function f_{L} is then

$$
f_{L}:\{0,1\}^{*} \rightarrow\{0,1\}: x \mapsto \begin{cases}1 & \text { if } x \in L \\ 0 & \text { if } x \notin L\end{cases}
$$

Construct a Turing machine which computes f_{L} in time $\mathcal{O}\left(n^{k}\right)$ for some fixed $k>0$.

Exercise 1.4

If $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is computable by a TM with a finite alphabet Γ then it is also computable by a TM with alphabet $\Sigma=\{0,1, \square, \triangleright\}$, moreover, with only a polynomial overhead.
Prove the statement above. Does the same hold for infinite Γ ? Does the same hold for $\Sigma=$ $\{1, \square, \triangleright\}$?

Exercise 1.5

Call a Turing machine M oblivious if the positions of its heads at the $i^{\text {th }}$ step of its computation on input x depend only on i and $|x|$, but not x itself.
Let $L \in \mathbf{D T I M E}(T)$ with $T: \mathbb{N} \rightarrow \mathbb{N}$ time-constructible. Show that there is an oblivious Turing machine which decides L in time $O\left(T^{2}\right)$.

Exercise 1.6*

Let M be a Turing machine with a (read only) input tape and one combined work/output tape. We assume that M decides a language $L \subseteq\{0,1\}^{*}$, i.e., every computation of M on an input $x \in\{0,1\}^{*}$ terminates eventually and after terminating the left-most position of the work tape will either be 1 if $x \in L$ or 0 if $x \notin L$.

We further assume that M never writes any "blank" \square. The space $s(x)$ used by M when processing an input x is then simply the number of non-blank symbols on the work/output tape after the computation of M on x has terminated.
(a) A reduced configuration is defined to be any tuple we obtain from any configuration of M by forgetting about the input tape, i.e., a reduced configuration only remembers the control state and the contents and head positions of the k work tapes. Given an input x, let $C_{i}(x)$ be the set of all configurations of the computation of M on x for which the input head reads the $i^{\text {th }}$ input symbol x_{i}. Let $R_{i}(x)$ be the set of reduced configurations we obtain from $C_{i}(x)$.

Let $x=x_{1} x_{2} \ldots x_{n}$ be an input of length n such that for any input y of length at most $n-1$ we have $s(y)<s(x)$.

- Show that $R_{i}(x)=R_{j}(x)$ for $1 \leq i<j \leq n$ implies that $x_{i} \neq x_{j}$.

Hint: Assume that $R_{i}(x)=R_{j}(x)$ and $x_{i}=x_{j}$ for some $1 \leq i<j \leq n$. Consider then the input $y=x_{1} \ldots x_{i} x_{j+1} \ldots x_{n}$, i.e., we obtain y from x by canceling the symbols on positions $i+1, \ldots, j$. For this input one can show that
$R_{k}(y) \subseteq R_{k}(x)$ for $1 \leq k \leq i$, resp. $R_{k}(y) \subseteq R_{k+(j-i)}(x)$ for $i<k \leq n-(j-i)$. (Proof?)
Show that this property entails the contradiction that M requires less than $s(x)$ space for processing x.
(b) Set $f(n):=\max \left\{s(x) \mid x \in\{0,1\}^{n}\right\}$ and assume that $f(n)$ is unbounded.

- Show that $f(n) \notin o(\log \log n)$.

Hint: Use the result of (a) to get an upper bound on n depending only on $f(n)$.

