Solution

Computational Complexity - Homework 1

Discussed on 15.04.2016.

Exercise 1.1

Recall the definition of the Landau notation for $f, g: \mathbb{N} \rightarrow \mathbb{N}$:

$$
\begin{array}{ll}
f \in \mathcal{O}(g) & : \Leftrightarrow \exists c \in(0, \infty) \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \leq c \cdot g(n) . \\
f \in \Omega(g) & : \Leftrightarrow g \in \mathcal{O}(f) \\
f \in \Theta(g) & : \Leftrightarrow f \in \mathcal{O}(g) \wedge f \in \Omega(g) \\
f \in o(g) & : \Leftrightarrow \quad \forall \epsilon \in(0, \infty) \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \leq \epsilon \cdot g(n) \\
f \in \omega(g) & : \Leftrightarrow g \in o(f) .
\end{array}
$$

Remark: Some authors prefer to write $f=\mathcal{O}(g)$ instead of $f \in \mathcal{O}(g)$. As $\mathcal{O}(g)$ is set of functions, while f is a function, the latter is more precise than the former.
(a) Assume f, g are strictly positive functions, i.e., $f(n), g(n)>0$ for all $n \in \mathbb{N}$. Show or disprove:

- $f \in \Theta(g)$ if and only if there exist $c_{1}, c_{2} \in(0, \infty)$ such that $c_{1} \leq f(n) / g(n) \leq c_{2}$ for almost all $n \in \mathbb{N}$. ("almost all" is equivalent to "except for finitely many").
- $f \in o(g)$ if and only if $\lim _{n \rightarrow \infty} f(n) / g(n)=0$.
(b) Let f and g be any two of the following functions. Describe their relation using the Landau notation.
(a) n^{2}
(b) n^{3}
(c) $n^{2} \log n$
(d) 2^{n}
(e) n^{n}
(f) $n^{\log n}$
(g) $2^{2^{n}}$
(h) $2^{2^{n+1}}$
(j) n^{2} if n is odd, 2^{n} otherwise.
(c) Describe (and prove) the relations between $2^{\mathcal{O}(n)}, \mathcal{O}\left(2^{n}\right)$ and $2^{n^{\mathcal{O}(1)}}$.

Solution:

-

$$
\begin{array}{ll}
& f \in \Theta(g) \\
\Leftrightarrow & f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(f) \\
\Leftrightarrow & \exists c_{f}>0 \exists n_{f} \forall n \geq n_{f}: f(n) \leq c_{f} g(n) \wedge \exists c_{g}>0 \exists n_{g} \forall n \geq n_{g}: g(n) \leq c_{g} f(n) \\
\stackrel{*}{\Leftrightarrow} \quad \exists c_{f}, c_{g}>0 \exists n_{0} \forall n \geq n_{0}: f(n) \leq c_{f} g(n) \wedge g(n) \leq c_{g} f(n) \\
\Leftrightarrow \quad \exists c_{f}, c_{g}>0 \exists n_{0} \forall n \geq n_{0}: \frac{1}{c_{g}} \leq \frac{f(n)}{g(n)} \leq c_{f} \\
\stackrel{* *}{g} \quad \exists c_{1}, c_{2}>0 \exists n_{0} \forall n \geq n_{0}: c_{1} \leq \frac{f(n)}{g(n)} \leq c_{2}
\end{array}
$$

*: (\Rightarrow) set $n_{0}:=\max \left(n_{f}, n_{g}\right) .(\Leftarrow)$ set $n_{f}:=n_{g}:=n_{0}$.
${ }^{* *}: c_{f}=c_{2}, c_{1}=1 / c_{f}$.

$$
\begin{array}{ll}
& f \in o(g) \\
\Leftrightarrow & \forall c>0 \exists n_{c} \forall n \geq n_{c}: f(n) \leq c g(n) \\
\Leftrightarrow & \forall c>0 \exists n_{c} \forall n \geq n_{c}: \frac{f(n)}{g(n)} \leq c \\
\stackrel{*}{*} \quad & \forall \epsilon>0 \exists n_{\epsilon} \forall n \geq n_{\epsilon}:\left|\frac{f(n)}{g(n)}\right|<\epsilon \\
\Leftrightarrow & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 .
\end{array}
$$

*: Note that (i) $f(n), g(n)>0$ and (ii) (\Rightarrow) set $c:=0.9 \epsilon,(\Leftarrow) \epsilon:=c$.

- Without any guarantee! Lower half defined by symmetry.

	n^{2}	n^{3}	$n^{2} \log n$	2^{n}	n^{n}	$n^{\log n}$	$2^{2^{n}}$	$2^{2^{n+1}}$	$f(n):=\left(n\right.$ odd? $n^{2}:$
n^{2}	$\Theta\left(n^{2}\right)$	$o\left(n^{3}\right)$	$o\left(n^{2} \log n\right)$	$o\left(2^{n}\right)$	$o\left(n^{n}\right)$	$o\left(n^{\log n}\right)$	$o\left(2^{2^{n}}\right)$	$o\left(2^{2^{n+1}}\right)$	$\mathcal{O}(f(n))$
n^{3}		$\Theta\left(n^{3}\right)$	$\omega\left(n^{2} \log n\right)$	$o\left(2^{n}\right)$	$o\left(n^{n}\right)$	$o\left(n^{\log n}\right)$	$o\left(2^{2^{n}}\right)$	$o\left(2^{2^{n+1}}\right)$	--
$n^{2} \log n$			$\Theta\left(n^{2} \log n\right)$	$o\left(2^{n}\right)$	$o\left(n^{n}\right)$	$o\left(n^{\log n}\right)$	$o\left(2^{2^{n}}\right)$	$o\left(2^{2^{n+1}}\right)$	--
2^{n}				$\Theta\left(2^{n}\right)$	$o\left(n^{n}\right)$	$\omega\left(n^{\log n}\right)^{*}$	$o\left(2^{2^{n}}\right)$	$o\left(2^{2^{n+1}}\right)$	$\Omega(f(n))$
n^{n}					$\Theta\left(n^{n}\right)$	$\omega\left(n^{\log n}\right)$	$o\left(2^{2^{n}}\right)$	$o\left(2^{2^{n+1}}\right)$	$\omega(f(n))$
$n^{\log n}$						$\Theta\left(n^{\log n}\right)$	$o\left(2^{2^{n}}\right)$	$o\left(2^{2^{n+1}}\right)$	--
$2^{2^{n}}$							$\Theta\left(2^{2^{n}}\right)$	$o\left(2^{\left.2^{n+1}\right)}\right.$	$\omega(f(n))$
$2^{2^{n+1}}$							$\Theta\left(2^{2^{n+1}}\right)$	$\omega(f(n))$	
$f(n)$								$\Theta(f(n))$	

*.
$2^{n} \in \omega\left(n^{\log n}\right) \Leftrightarrow n^{\log n} \in o\left(2^{n}\right) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{n^{\log n}}{2^{n}}=0 \Leftrightarrow \lim _{n \rightarrow \infty} 2^{(\log n)^{2}-n}=0 \Leftrightarrow \lim _{n \rightarrow \infty}(\log n)^{2}-n=-\infty \Leftrightarrow \lim _{n \rightarrow \infty} \underline{(\operatorname{los}}$
Using l'Hospital:

$$
\lim _{n \rightarrow \infty} \frac{(\log n)^{2}}{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} \frac{2(\log n) \frac{1}{n}}{1}=0 \Leftrightarrow \lim _{n \rightarrow \infty} \frac{\log n}{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} \frac{1 / n}{1}=0 .
$$

Remark: Similarly, one shows that $(\log n)^{k} \in o(n)$ for any $k \in \mathbb{N}$.

- We have $\mathcal{O}\left(2^{n}\right) \nsubseteq 2^{\mathcal{O}(n)} \nsubseteq 2^{n^{\mathcal{O}(1)}}$. Proof: Let $f \in \mathcal{O}\left(2^{n}\right)$, then there exists $c \geq 1$ such that $f(n) \leq c 2^{n}$ for all large enough n. Hence $f(n) \leq 2^{\log c+n} \leq 2^{c n}$ for all large enough n and thus $f \in 2^{\mathcal{O}(n)}$. Similarly we have $2^{c n} \leq 2^{n^{c}}$ for $c \geq 1$ and large enough n which shows the second inclusion. Observe that the inclusions are strict, since for example $2^{3 n} \notin \mathcal{O}\left(2^{n}\right)$ and $2^{n^{5}} \notin \mathcal{O}\left(2^{\mathcal{O}(n)}\right)$

Exercise 1.2

For a, b, c positive integers with $c \geq 2$ show or disprove that

$$
a 2^{n \cdot b \cdot c^{n}} \in 2^{2^{O(n)}}
$$

Solution: Recall that $f(n) \in \Omega(n)$ if

$$
\exists c \in(0, \infty) \exists n_{0} \forall n \geq n_{0}: f(n) \leq c \cdot n
$$

Hence, we have to show that there are constants $C>0$ and n_{0} such that

$$
a 2^{n \cdot b \cdot c^{n}} \leq 2^{2^{C \cdot n}} \text { for all } n \geq n_{0}
$$

As \log is strictly monotonically increasing, this is equivalent to

$$
\log a+n \cdot b \cdot c^{n} \leq 2^{C \cdot n} \text { for all } n \geq n_{0}
$$

(We always assume that \log refers to the base 2.)
As $b>0, c>1$ we find a n_{0} such that $\log a \leq n \cdot b \cdot c^{n}$ for all $n \geq n_{0}$. Thus, it is sufficient to adapt the constants C, n_{0} in such a way that

$$
2 n \cdot b \cdot c^{n} \leq 2^{C \cdot n} \text { for all } n \geq n_{0}
$$

Again using the monotonicity of log, we obtain:

$$
1+\log b+\log n+n \cdot \log c \leq C \cdot n \text { for all } n \geq n_{0}
$$

Choosing n_{0} big enough so that (i) $\log a \leq n \cdot b \cdot c^{n}$ and (ii) $1+\log b+\log n \leq n \cdot \log c$, we can choose C to be $2 \log c$.

Exercise 1.3

Consider the following language on $\{0,1\}$:

$$
L=\left\{u 0 v 0 w \in\{0,1\}^{*}\left|u, v, w \in\{1\}^{*} \wedge\right| v|\leq|w| \leq|u| \wedge \exists k \in\{|v|, \ldots,|w|\}: k \text { divides }| u \mid\right\}
$$

Its characteristic function f_{L} is then

$$
f_{L}:\{0,1\}^{*} \rightarrow\{0,1\}: x \mapsto \begin{cases}1 & \text { if } x \in L \\ 0 & \text { if } x \notin L\end{cases}
$$

Construct a Turing machine which computes f_{L} in time $\mathcal{O}\left(n^{k}\right)$ for some fixed $k>0$.

Solution: We give an informal description of the behaviour of a TM deciding L :

- 1. Step: Check that the input x is of the form $1^{*} 01^{*} 01^{*}$.

If x is not of the required from, output 0 and halt.

- 2. Step: Copy u, v, and w parts of x to work tapes 1 to 3 .
- 3. Step: Check that $|v| \leq|w| \leq|u|$.

If x does not satisfy the requirement on u, v, w, output 0 and halt.

- 4. Step: As long as work tape 4 contains less 1 s than work tape $1(u)$ append the content of work tape $2(v)$ to the content of work tape 4.
- 5. Step: Check whether work tapes 1 and 4 contain the same number of 1 s .

If this is the case, output 1 and halt.

- 6. Step: Empty work tape 4.
- 7. Step: Append an 1 to the content of work tape 2.
- 8. Step: Check that work tape 2 contains at most as many 1 s as work tape 3 .

If this does not hold, output 0 and halt.

- Go to Step 4.

One easily checks that every "macro step" can be done by a TM using at most $\mathcal{O}(|x|)$ many steps.

Exercise 1.4

If $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is computable by a TM with a finite alphabet Γ then it is also computable by a TM with alphabet $\Sigma=\{0,1, \square, \triangleright\}$, moreover, with only a polynomial overhead.
Prove the statement above. Does the same hold for infinite Γ ? Does the same hold for $\Sigma=$ $\{1, \square, \triangleright\}$?

Solution: In the lecture, you have seen that a k-tape TM can be simulated by a single tape TM with only a polynomial overhead. We will make use of this fact.

First, note that any element of Γ can be encoded using $k=\lceil\log |\Gamma|\rceil$ letters of binary alphabet. We can thus simulate the working tape with symbols of Γ by k tapes with symbols of Σ.

Exercise 1.5

Call a Turing machine M oblivious if the positions of its heads at the $i^{\text {th }}$ step of its computation on input x depend only on i and $|x|$, but not x itself.
Let $L \in \operatorname{DTIME}(T)$ with $T: \mathbb{N} \rightarrow \mathbb{N}$ time-constructible. Show that there is an oblivious Turing machine which decides L in time $O\left(T^{2}\right)$.

Solution: Let M be a Turing machine deciding L in time $T(n)$. Further, let M_{T} be a Turing machine calculating T. As T is required to be time-constructible, we find such a M_{T}.

We sketch how to construct from M and M_{T} an oblivious Turing machine O which decides L in time $\mathcal{O}\left(T(n)^{2}\right)$. For simplicity, we assume that M is a one-tape TM; for this, we allow M to also write to the input tape. O is not required to have only a single tape, still we allow O to write to its input tape, too.

The behaviour of O is as follows:
(a) First, O reads the input once from left to right, copies for every symbol read an 1 to the input tape of M_{T}, and, finally, moves all heads back to the left-most position.
(b) It then starts M_{T} on input $1^{|x|}$. For every step done by M_{T}, O also writes an 1 to two tapes, called space and time in the following. After M_{T} has terminated, the content of both space and time is $\triangleright 1^{T(|x|)}$.
(c) Then, O simulates exactly $T(|x|)$ steps of M, i.e., after simulating a single step of M, O moves the head of time one place to the left, the simulation terminates when the head of time hits \triangleright.

A single step of M is simulated as follows:
O remembers the position of the head of M on the input tape by some apropriate symbol, e.g., if Γ is the tape alphabet used by M, then O might use the symbols $\Gamma \cup \hat{\Gamma}$ where $\hat{\Gamma}=\{\hat{\gamma} \mid \gamma \in \Gamma\}$.
In order for O to be able to simulate a step of M, O needs to remember the control state of M and (at most three) symbols $\mu \hat{\gamma} \nu$ within the 1 -step vicinity of the head of the M. (This is finite information and therefore can be stored in the control of O. Check this by yourself!)
As M is time-bounded by T, O knows that the head of M can never move more than $T(|x|)$ steps to the right. Hence, O can scan the whole tape content of M by moving its input head $T(|x|)$ steps to the right and then back again. The space tape can be used for this.

Within this scan, O can remember the three symbols $\mu \hat{\gamma} \nu$, determine from the next step of M and change its tape content accordingly.
E.g.: assume that a given point of time M is in the configuration $(q, \triangleright a b \hat{c} d)$) with $\delta_{M}(q, c)=$ $\left(q^{\prime}, e, \rightarrow\right)$, i.e., M makes the following step:

$$
(q, \triangleright a b \hat{c} d) \rightarrow\left(q^{\prime}, \triangleright a b e \hat{d}\right) .
$$

O simulates this step as follows: it remebers in its control state the control state q of plus the last three symbols read. O scans its input tape from left to right until one step after \hat{c} is encountered. Then O remembers the necessary symbols $b \hat{c} d$ and the state q so it can determine the next step of M. As M moves right, O can immediately replace d to \hat{d}, then it moves on to the right until $T(n)$ steps are made (reading space in lockstep). O then moves its input head back to the left-most position. On its way back O waits on \hat{d} so it can replace the symbol \hat{c} left of it by e. Similarly, O can simulate a step where M moves its head to the left.

It is left to the reader to check that O is indeed oblivious.

Exercise 1.6*

Let M be a Turing machine with a (read only) input tape and one combined work/output tape. We assume that M decides a language $L \subseteq\{0,1\}^{*}$, i.e., every computation of M on an input $x \in\{0,1\}^{*}$ terminates eventually and after terminating the left-most position of the work tape will either be 1 if $x \in L$ or 0 if $x \notin L$.
We further assume that M never writes any "blank" \square. The space $s(x)$ used by M when processing an input x is then simply the number of non-blank symbols on the work/output tape after the computation of M on x has terminated.
(a) A reduced configuration is defined to be any tuple we obtain from any configuration of M by forgetting about the input tape, i.e., a reduced configuration only remembers the control state and the contents and head positions of the k work tapes. Given an input x, let $C_{i}(x)$ be the set of all configurations of the computation of M on x for which the input head reads the $i^{\text {th }}$ input symbol x_{i}. Let $R_{i}(x)$ be the set of reduced configurations we obtain from $C_{i}(x)$.
Let $x=x_{1} x_{2} \ldots x_{n}$ be an input of length n such that for any input y of length at most $n-1$ we have $s(y)<s(x)$.

- Show that $R_{i}(x)=R_{j}(x)$ for $1 \leq i<j \leq n$ implies that $x_{i} \neq x_{j}$.

Hint: Assume that $R_{i}(x)=R_{j}(x)$ and $x_{i}=x_{j}$ for some $1 \leq i<j \leq n$. Consider then the input $y=x_{1} \ldots x_{i} x_{j+1} \ldots x_{n}$, i.e., we obtain y from x by canceling the symbols on positions $i+1, \ldots, j$. For this input one can show that
$R_{k}(y) \subseteq R_{k}(x)$ for $1 \leq k \leq i$, resp. $R_{k}(y) \subseteq R_{k+(j-i)}(x)$ for $i<k \leq n-(j-i)$. (Proof?)
Show that this property entails the contradiction that M requires less than $s(x)$ space for processing x.
(b) Set $f(n):=\max \left\{s(x) \mid x \in\{0,1\}^{n}\right\}$ and assume that $f(n)$ is unbounded.

- Show that $f(n) \notin o(\log \log n)$.

Hint: Use the result of (a) to get an upper bound on n depending only on $f(n)$.

Solution:

- The proof goes by a kind of 'shrinking argument' (the opposite of a 'pumping argument'). We argue by contradiction, showing that if under the given assumptions it were the case that $x_{i}=x_{j}$, then the segment in between can be deleted without substantially changing the behaviour of the Turing machine. In particular it will not use any less space, contradicting the monotonicity of s.
Assume that $x_{i}=x_{j}$ and set $y=x_{1} \ldots x_{i} x_{j+1} \ldots x_{n}$. Clearly, y has length less than n. By assumption on x, the computation of M on y therefore requires less than $s(x)$ space.
As $R_{i}(x)=R_{j}(x)$ one can show that $R_{k}(y) \subseteq R_{k}(x)$ for $k \leq i$ and $R_{k}(y) \subseteq R_{k+(j-i)}(x)$ for $k>i$.
This can be proven by induction on the length of a computation of M on y. That is, we can show by induction on l, that if M reaches a configuration C after l steps such that
M 's input tape head is in the k th position (so that $C \in C_{k}(y)$), then the reduction of C belongs to $R_{k}(x)$ if $k \leq i$ and $R_{k+(j-1)}(x)$ if $k>i$.
As M halts for any input, one of the $R_{i}(y)$ has to contain a halting configuration. As there is exactly one such configuration for every input, and the $R_{i}(y)$ s are subsets of the $R_{j}(x) \mathrm{s}$, this halting configuration is also the halting configuration of the run of M on x. But as the run of M on y needs less than $s(x)$ space, we obtain the contradiction that the number of non-blank symbols of the work tape in the halting configuration of the computation of M on n is less than $s(x)$.
- Choose any $S>0$ and let x_{S} be a shortest input such that $s\left(x_{S}\right)=f\left(n_{S}\right) \geq S$ with $n_{S}:=\left|x_{S}\right|$, i.e., $f(k)<S$ for $k<n_{S}$. As $f(n)$ is assumed to be unbounded, we find such an input x_{S}. (The subscript S is to remind ourselves on the dependency on S.)
We now use (a) to get an upper bound on the length of x :
Every reduced configuration is of the form (q, i, w) where q is a control state, i is the position of the head of the work tape, and w is the content of the work tape. Thus, there are at most $|Q| \cdot f\left(n_{S}\right) \cdot|\Gamma|^{f\left(n_{S}\right)}$ different reduced configurations. As $R_{i}\left(x_{S}\right)=R_{j}\left(x_{S}\right)$ implies $x_{i} \neq x_{j}$ for $i \neq j$, a particular subset of $Q \times\left\{1, \ldots, f\left(n_{S}\right)\right\} \times \Gamma^{f\left(n_{S}\right)}$ can only appear at most twice (as $x_{i} \in\{0,1\}$) in the sequence $R_{1}(x), \ldots, R_{n_{S}}(x)$. Hence, we have

$$
n_{S} \leq 2 \cdot 2^{|Q| \cdot f\left(n_{S}\right) \cdot|\Gamma|^{f\left(n_{S}\right)}}
$$

As $2 \cdot 2^{|Q| \cdot S \cdot|\Gamma|^{S}} \in 2^{2^{O(S)}}$, we find $c>0$ and $S_{0}>0$ such that:

$$
n_{S} \leq 2^{2^{c f\left(n_{S}\right)}} \text { for all } S \geq S_{0}\left(\text { as } f\left(n_{S}\right) \geq S \geq S_{0}\right)
$$

This implies that for infinitely many n we have

$$
\frac{1}{c} \cdot \log \log n \leq f(n)
$$

i.e., $f(n) \notin o(\log \log n)$.

Remark: As a corollary we obtain that every language L which is decided by TM using $o(\log \log n)$ space can also be decided by a Turing machine using constant space. As constant space can always be encoded into the finite control of the TM, such a TM is basically a two-way finite automaton.

