Complexity Theory

Jorg Kreiker

Chair for Theoretical Computer Science
Prof. Esparza

TU Minchen

Summer term 2010

Lecture 8
PSPACE

Intro

Agenda

Wrap-up Ladner proof and time vs. space
succinctness

QBF and GG

PSPACE completeness

QBF is PSPACE-complete

Savitch’s theorem

Intro

Comments about previous lecture

Enumeration of languages in P:
e enumerate pairs (M;, pj)
e jenumerates all TMs, j all polynomials
e run M; for p; steps

Time vs Space

e based on configuration graphs one can also show
DTIME(s(n)) € NTIME(s(n)) € SPACE(s(n))

e if configurations include a counter over all possible choices

Succinctness

Succinctness vs Expressiveness

Some intuition:
e 5.5is more succinctthan5+5+5+5+5

= multiplication allows for more succinct representation of
arithmetic expressions

e but it is not more expressive

regular expressions
e regular expressions with squaring are more succinct than
without
e example: strings over {1} with length divisible by 16
* ((((00)?)?)?)" versus
» (0000000000000000)*
e but obviously squaring does not add expressiveness

Succinctness

More succinct means more difficult to handle

Non-deterministic finite automata
e NFAs can be exponentially more succinct than DFAs
e but equally expressive
e example: k-last symbol is 1

e complementation, equivalence are polynomial for DFAs and
exponential for NFAs

Succinctness

Succinct Boolean formulas

Consider the following formula where y = xVvy Vv z

Formula is satisfiable iff 4z Vx Vy.y is true, where variables range
over {0, 1}.

= Quantified Boolean Formulas

Problems in PSPACE QBF

Quantified Boolean Formulas

Definition (QBF)
A quantified Boolean formula is a formula of the form

Qi1x1Qox2 ... QnXne(X1, ..., Xn)

e where each Q; € {V, 3}
e each x; ranges over {0, 1}
e ¢ is quantifier-free

¢ wlog we can assume prenex form

o formulas are closed, ie. each QBF is true or false
e QBF = {¢ | ¢ is a true QBF}

o if all @Q; = 4, we obtain SAT as a special case

o ifall Q; =V, we obtain Tautology as a special case

Problems in PSPACE QBF

QBF is in PSPACE

Polynomial space algorithm to decide QBF

gbfsolve(y)
if ¥ is quantifier-free
return evaluation of y
if y = Qx.y’
ifQ=13
if gbfsolve(y’[x — 0]) return true
if gbfsolve(y’[x +— 1]) return true
ifQ=Vv
by = gbfsolve(y’[x — 0])
by = gbfsolve(y’[x + 1])
return by A by
return false

e each recursive call can re-use same space!
e gbsolve uses at most O(|y/|?) space

Problems in PSPACE GG

Generalized Geography

children’s game, where people take turn naming cities

next city must start with previous city’s final letter

as in Minchen — Nirnberg

no repetitions
lost if no more choices left

Formalization
Given a graph and a node, players take turns choosing an unvisited
adjacent node until no longer possible.

GG = {(G, u) | player 1 has winning strategy from node u in G}

10

Problems in PSPACE GG

GG € PSPACE

and here is the algorithm to prove it:

ggsolve(G, u)
if u has no outgoing edge return false
remove u and its adjacent edges from G to obtain G’
for each u; adjacent to u
b; = ggsolve(G’, u;)
return A; b;

o stack depth 1 for recursion implies polynomial space
* QBF <, GG (see transparency)

Problems in PSPACE GG

Agenda

Wrap-up Ladner proof and time vs. space v
succinctness v/

QBF and GG v/

PSPACE completeness

QBF is PSPACE-complete

Savitch’s theorem

192

PSPACE completeness

PSPACE-completness

Definition (PSPACE-completeness)

Language L is PSPACE-hard if for every L’ € PSPACE L" <, L. L
is PSPACE-complete if L € PSPACE and L is PSPACE-hard.

13

PSPACE completeness

QBF is PSPACE-complete

Theorem
QBF is PSPACE-complete.

¢ have already shown that QBF € PSPACE

¢ need to show that every problem L € PSPACE is
polynomial-time reducible to QBF

PSPACE completeness

Proof

let L € PSPACE arbitrary
L € SPACE(s(n)) for polynomial s
m € O(s(n)): bits needed to encode configuration C

exists Boolean formula ¢y x with size O(m) such that
emx(C,C’") = 1iff C,C’ € {0,1}™ encode adjacent
configurations; see Cook-Levin

define QBF ¢ such that ¢(C, C’) is true iff there is a path in
G(M, x) from C to C’

W(Cstart, Caccept) is true iff M accepts x

15

PSPACE completeness

Proof — cont'd

Define y inductively!
e y;i(C, C’): there is a path of length at most 2/ from C to C’
° ¥ =ymand Yo = oumx

wl(c’ C/) — EICN.wi_‘I(C, CN) A w’__1(C/l’ Cl)

might be exponential size, therefore use equivalent

¥i(C,C") = 3AC"”.NDy.NDs..
(Dy=CADy=C")V(D;=C"ADp=C))
= ¥j_1(Dy, D2)

16

PSPACE completeness

Size of y

¥i(C,C") = 3C”.NDy.¥Ds..
(Dy =CADy,=C")V(D; =C" ADs = C"))
= Yi_1(D1, D2)

e (C’ stands for m variables
= |yil = i1l + O(m)
= |yl € O(m?)

PSPACE completeness

Observations and consequences

e GG is PSPACE-complete

¢ if PSPACE # NP then QBF and GG have no short certificates
e note: proof does not make use of outdegree of G(M, x)

QBF is NPSPACE-complete

NPSPACE = PSPACE!

e in fact, the same reasoning can be used to prove a stronger
result

18

Savitch’s Theorem

Savitch’s Theorem

Theorem (Savitch)

For every space-constructible s : N — N with s(n) > log n
NSPACE(s(n)) c SPACE(s(n)?).

19

Savitch’s Theorem

Proof

Let M be a NDTM accepting L. Let G(M, x) be its configuration
graph of size mO(25(") such that each node is represented using
log m space.

M accepts x iff there is a path of length at most m from Cgtart to
Caccept-

Consider the following algorithm reach(u,v,i) to determine whether
there is a path from u to v of length at most 2"
e for each node z of M
e by =reach(u,z,i—1)
e by =reach(z,v,i—1)
e return by A by

= reach(Cstart, Caccept> M) takes space O((log m)?) = O(s(n)?)!

20

Conclusion

Further Reading

L. J. Stockmeyer and A. R. Meyer. Word problems requiring
exponential time. Proceedings of the 5th Symposium on
Theory of Computing, pages 1-9, 1973

e contains the original proof of PSPACE completeness of QBF

o PSPACE-completeness of NFA equivalence
regular expression equivalence with squaring is
EXPSPACE-complete:
http://people.csail.mit.edu/meyer/rsq.pdf
Gilbert, Lengauer, Tarjan The Pebbling Problem is Complete in
Polynomial Space. SIAM Journal on Computing, Volume 9,
Issue 3, 1980, pages 513-524.
http://www.qbflib.org/

e tools (solvers)

e many QBF models from verification, games, planning

e competitions
PSPACE-completeness of Hex, Atomix, Gobang, Chess
W.J.Savitch Relationship between nondeterministic and

21

Conclusion

What have we learnt

succinctness leads to more difficult problems

PSPACE: computable in polynomial space (deterministically)
PSPACE-completeness defined in terms of polynomial Karp
reductions

canonical PSPACE-complete problem: QBF generalizes SAT
other complete problems: generalized geography, chess, Hex,
Sokoban, Reversi, NFA equivalence, regular expressions
equivalence

PSPACE ~ winning strategies in games rather than short
certificates

PSPACE = NPSPACE

Savitch: non-deterministic space can be simulated by
deterministic space with quadratic overhead (by path
enumeration in configuration graph)

Up next: NL

29

	Intro
	Succinctness
	Problems in PSPACE
	QBF
	GG

	PSPACE completeness
	Savitch's Theorem
	Conclusion

