Complexity Theory

Jörg Kreiker

Chair for Theoretical Computer Science
Prof. Esparza
TU München

Summer term 2010

Lecture 8
PSPACE

Agenda

- Wrap-up Ladner proof and time vs. space
- succinctness
- QBF and GG
- PSPACE completeness
- QBF is PSPACE-complete
- Savitch's theorem

Comments about previous lecture

Enumeration of languages in P:

- enumerate pairs $\left\langle M_{i}, p_{j}\right\rangle$
- i enumerates all TMs, j all polynomials
- run M_{i} for p_{j} steps

Time vs Space

- based on configuration graphs one can also show
$\operatorname{DTIME}(s(n)) \subseteq \operatorname{NTIME}(s(n)) \subseteq \operatorname{SPACE}(s(n))$
- if configurations include a counter over all possible choices

Succinctness vs Expressiveness

Some intuition:

- $5 \cdot 5$ is more succinct than $5+5+5+5+5$
\Rightarrow multiplication allows for more succinct representation of arithmetic expressions
- but it is not more expressive
regular expressions
- regular expressions with squaring are more succinct than without
- example: strings over $\{1\}$ with length divisible by 16
- $\left(\left(\left((00)^{2}\right)^{2}\right)^{2}\right)^{*}$ versus
- (0000000000000000)*
- but obviously squaring does not add expressiveness

More succinct means more difficult to handle

Non-deterministic finite automata

- NFAs can be exponentially more succinct than DFAs
- but equally expressive
- example: k-last symbol is 1
- complementation, equivalence are polynomial for DFAs and exponential for NFAs

Succinct Boolean formulas

Consider the following formula where $\psi=x \vee y \vee \bar{z}$

$$
\begin{array}{ll}
& (x \wedge y \wedge \psi) \\
\wedge & (x \wedge \bar{y} \wedge \psi) \\
\wedge & (\bar{x} \wedge y \wedge \psi) \\
\wedge & (\bar{x} \wedge \bar{y} \wedge \psi)
\end{array}
$$

Formula is satisfiable iff $\exists z \forall x \forall y . \psi$ is true, where variables range over $\{0,1\}$.
\Rightarrow Quantified Boolean Formulas

Quantified Boolean Formulas

Definition (QBF)

A quantified Boolean formula is a formula of the form

$$
Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

- where each $Q_{i} \in\{\forall, \exists\}$
- each x_{i} ranges over $\{0,1\}$
- φ is quantifier-free
- wlog we can assume prenex form
- formulas are closed, ie. each QBF is true or false
- QBF $=\{\varphi \mid \varphi$ is a true QBF $\}$
- if all $Q_{i}=\exists$, we obtain SAT as a special case
- if all $Q_{i}=\forall$, we obtain Tautology as a special case

QBF is in PSPACE

Polynomial space algorithm to decide QBF

```
qbfsolve(\psi)
    if \psi is quantifier-free
        return evaluation of }
    if }\psi=Qx.\mp@subsup{\psi}{}{\prime
    if Q=ヨ
        if qbfsolve( }\mp@subsup{\psi}{}{\prime}[x\mapsto0])\mathrm{ return true
        if qbfsolve( }\mp@subsup{\psi}{}{\prime}[x\mapsto1])\mathrm{ return true
    if Q = \forall
        b
        b}\mp@subsup{\mp@code{2}}{2}{=qbfsolve(\mp@subsup{\psi}{}{\prime}[x\mapsto1])
        return b}\mp@subsup{b}{1}{}\wedge\mp@subsup{b}{2}{
    return false
```

- each recursive call can re-use same space!
- qbsolve uses at most $O\left(|\psi|^{2}\right)$ space

Generalized Geography

- children's game, where people take turn naming cities
- next city must start with previous city's final letter
- as in München \rightarrow Nürnberg
- no repetitions
- lost if no more choices left

Formalization
Given a graph and a node, players take turns choosing an unvisited adjacent node until no longer possible.
$G G=\{\langle G, u\rangle \mid$ player 1 has winning strategy from node u in $G\}$

GG \in PSPACE

and here is the algorithm to prove it:
ggsolve(G, u)
if u has no outgoing edge return false
remove u and its adjacent edges from G to obtain G^{\prime}
for each u_{i} adjacent to u

$$
b_{i}=\operatorname{ggsolve}\left(G^{\prime}, u_{i}\right)
$$

return $\bigwedge_{i} \overline{b_{i}}$

- stack depth 1 for recursion implies polynomial space
- QBF \leq_{p} GG (see transparency)

Agenda

- Wrap-up Ladner proof and time vs. space \checkmark
- succinctness \checkmark
- QBF and GG \checkmark
- PSPACE completeness
- QBF is PSPACE-complete
- Savitch's theorem

PSPACE-completness

Definition (PSPACE-completeness)

Language L is PSPACE-hard if for every $L^{\prime} \in$ PSPACE $L^{\prime} \leq_{p} L . L$ is PSPACE-complete if $L \in$ PSPACE and L is PSPACE-hard.

QBF is PSPACE-complete

Theorem

QBF is PSPACE-complete.

- have already shown that QBF \in PSPACE
- need to show that every problem $L \in$ PSPACE is polynomial-time reducible to QBF

Proof

- let $L \in$ PSPACE arbitrary
- $L \in \operatorname{SPACE}(s(n))$ for polynomial s
- $m \in O(s(n))$: bits needed to encode configuration C
- exists Boolean formula $\varphi_{M, x}$ with size $O(m)$ such that $\varphi_{M, x}\left(C, C^{\prime}\right)=1$ iff $C, C^{\prime} \in\{0,1\}^{m}$ encode adjacent configurations; see Cook-Levin
- define QBF ψ such that $\psi\left(C, C^{\prime}\right)$ is true iff there is a path in $G(M, x)$ from C to C^{\prime}
- $\psi\left(C_{\text {start }}, C_{\text {accept }}\right)$ is true iff M accepts x

Proof - cont'd

Define ψ inductively!

- $\psi_{i}\left(C, C^{\prime}\right)$: there is a path of length at most 2^{i} from C to C^{\prime}
- $\psi=\psi_{m}$ and $\psi_{0}=\varphi_{M, x}$

$$
\psi_{i}\left(C, C^{\prime}\right)=\exists C^{\prime \prime} . \psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)
$$

might be exponential size, therefore use equivalent

$$
\begin{aligned}
\psi_{i}\left(C, C^{\prime}\right)= & \exists C^{\prime \prime} \cdot \forall D_{1} \cdot \forall D_{2} . \\
& \left(\left(D_{1}=C \wedge D_{2}=C^{\prime \prime}\right) \vee\left(D_{1}=C^{\prime \prime} \wedge D_{2}=C^{\prime}\right)\right) \\
& \Rightarrow \psi_{i-1}\left(D_{1}, D_{2}\right)
\end{aligned}
$$

Size of ψ

$$
\begin{aligned}
\psi_{i}\left(C, C^{\prime}\right)= & \exists C^{\prime \prime} \cdot \forall D_{1} \cdot \forall D_{2} . \\
& \left(\left(D_{1}=C \wedge D_{2}=C^{\prime \prime}\right) \vee\left(D_{1}=C^{\prime \prime} \wedge D_{2}=C^{\prime}\right)\right) \\
& \Rightarrow \psi_{i-1}\left(D_{1}, D_{2}\right)
\end{aligned}
$$

- $C^{\prime \prime}$ stands for m variables

$$
\begin{aligned}
& \Rightarrow\left|\psi_{i}\right|=\left|\psi_{i-1}\right|+O(m) \\
& \Rightarrow|\psi| \in O\left(m^{2}\right)
\end{aligned}
$$

Observations and consequences

- GG is PSPACE-complete
- if PSPACE \neq NP then QBF and GG have no short certificates
- note: proof does not make use of outdegree of $G(M, x)$
\Rightarrow QBF is NPSPACE-complete
\Rightarrow NPSPACE $=$ PSPACE!
- in fact, the same reasoning can be used to prove a stronger result

Savitch's Theorem

Theorem (Savitch)

For every space-constructible $s: \mathbb{N} \rightarrow \mathbb{N}$ with $s(n) \geq \log n$ $\operatorname{NSPACE}(s(n)) \subseteq \operatorname{SPACE}\left(s(n)^{2}\right)$.

Proof

Let M be a NDTM accepting L. Let $G(M, x)$ be its configuration graph of size $m O\left(2^{s(n)}\right)$ such that each node is represented using log m space.
M accepts x iff there is a path of length at most m from $C_{\text {start }}$ to $C_{\text {accept }}$.

Consider the following algorithm reach(u,v,i) to determine whether there is a path from u to v of length at most 2^{i}.

- for each node z of M
- $b_{1}=\operatorname{reach}(u, z, i-1)$
- $b_{2}=\operatorname{reach}(z, v, i-1)$
- return $b_{1} \wedge b_{2}$
$\Rightarrow \operatorname{reach}\left(C_{\text {start }}, C_{\text {accept }}, m\right)$ takes space $O\left((\log m)^{2}\right)=O\left(s(n)^{2}\right)!$

Further Reading

- L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. Proceedings of the 5th Symposium on Theory of Computing, pages 1-9, 1973
- contains the original proof of PSPACE completeness of QBF
- PSPACE-completeness of NFA equivalence
- regular expression equivalence with squaring is EXPSPACE-complete: http://people.csail.mit.edu/meyer/rsq.pdf
- Gilbert, Lengauer, Tarjan The Pebbling Problem is Complete in Polynomial Space. SIAM Journal on Computing, Volume 9, Issue 3, 1980, pages 513-524.
- http://www.qbflib.org/
- tools (solvers)
- many QBF models from verification, games, planning
- competitions
- PSPACE-completeness of Hex, Atomix, Gobang, Chess
- W.J.Savitch Relationship between nondeterministic and

What have we learnt

- succinctness leads to more difficult problems
- PSPACE: computable in polynomial space (deterministically)
- PSPACE-completeness defined in terms of polynomial Karp reductions
- canonical PSPACE-complete problem: QBF generalizes SAT
- other complete problems: generalized geography, chess, Hex, Sokoban, Reversi, NFA equivalence, regular expressions equivalence
- PSPACE ~ winning strategies in games rather than short certificates
- PSPACE = NPSPACE
- Savitch: non-deterministic space can be simulated by deterministic space with quadratic overhead (by path enumeration in configuration graph)
Up next: NL

