Complexity Theory

Jörg Kreiker

Chair for Theoretical Computer Science
Prof. Esparza
TU München

Summer term 2010

Lecture 6

coNP

Agenda

- coNP
- the importance of P vs. NP vs. coNP
- neither in P nor NP-complete: Ladner's theorem
- wrap-up Lecture 1-6
- muddiest point

coNP

- reminder: $L \subseteq\{0,1\}^{*} \in \operatorname{coNP}$ iff $\{0,1\}^{*} \backslash L \in \operatorname{NP}$
- example: $\overline{\text { SAT }}$ contains

coNP

- reminder: $L \subseteq\{0,1\}^{*} \in \operatorname{coNP}$ iff $\{0,1\}^{*} \backslash L \in \operatorname{NP}$
- example: $\overline{\text { SAT }}$ contains
- not well-formed formulas
- unsatisfiable formulas

coNP

- reminder: $L \subseteq\{0,1\}^{*} \in \operatorname{coNP}$ iff $\{0,1\}^{*} \backslash L \in \operatorname{NP}$
- example: $\overline{\text { SAT }}$ contains
- not well-formed formulas
- unsatisfiable formulas
- does $\overline{\mathrm{SAT}}$ have polynomial certificates?

coNP

- reminder: $L \subseteq\{0,1\}^{*} \in \operatorname{coNP}$ iff $\{0,1\}^{*} \backslash L \in \operatorname{NP}$
- example: $\overline{\text { SAT }}$ contains
- not well-formed formulas
- unsatisfiable formulas
- does $\overline{\text { SAT }}$ have polynomial certificates?
- not known: open problem whether NP is closed under complement
- note that P is closed under complement, compare with NFA vs DFA closure

For all certificates

- like for NP there is a characterization in terms of certificates
- for coNP it is dual: for all certificates
- $\overline{3 S A T}$: to prove unsatifiability one must check all assignments, for satisfiability only one

For all certificates

- like for NP there is a characterization in terms of certificates
- for coNP it is dual: for all certificates
- $\overline{3 S A T}$: to prove unsatifiability one must check all assignments, for satisfiability only one

Theorem (coNP certificates)

A language $L \subseteq\{0,1\}^{*}$ is in coNP iff there exists a polynomial p and a TM M such that

$$
\forall x \in\{0,1\}^{*} x \in L \Leftrightarrow \forall u \in\{0,1\}^{p(|x|)} M(x, u)=1
$$

Completeness

- like for NP one can define coNP-hardness and completeness
- L is coNP-complete iff $L \in$ coNP and all problems in coNP are polynomial-time Karp-reducible to L
- classical example: Tautology $=\{\varphi \mid$ φ is Boolean formula that is true for every assignment\}
- example: $x \vee \bar{x} \in$ Tautology
- proof?

Completeness

- like for NP one can define coNP-hardness and completeness
- L is coNP-complete iff $L \in$ coNP and all problems in coNP are polynomial-time Karp-reducible to L
- classical example: Tautology $=\{\varphi \mid$ φ is Boolean formula that is true for every assignment\}
- example: $x \vee \bar{x} \in$ Tautology
- proof?
- note that L is coNP-complete, if \bar{L} is NP-complete
$\Rightarrow \overline{\mathrm{SAT}}$ is coNP complete
\Rightarrow Tautology is coNP-complete (reduction from $\overline{\mathrm{SAT}}$ by negating formula)

Regular Expression Equivalence

Remember yesterday's teaser! A regular expression over $\{0,1\}$ is defined by

$$
r::=0|1| r r|r| r|r \cap r| r^{*}
$$

The language defined by r is written $\mathcal{L}(r)$.

Regular Expression Equivalence

Remember yesterday's teaser! A regular expression over $\{0,1\}$ is defined by

$$
r::=0|1| r r|r| r|r \cap r| r^{*}
$$

The language defined by r is written $\mathcal{L}(r)$.

- let $\varphi=C_{1} \wedge \ldots \wedge C_{m}$ be a Boolean formula in 3CNF over variables x_{1}, \ldots, x_{n}

Regular Expression Equivalence

Remember yesterday's teaser! A regular expression over $\{0,1\}$ is defined by

$$
r::=0|1| r r|r| r|r \cap r| r^{*}
$$

The language defined by r is written $\mathcal{L}(r)$.

- let $\varphi=C_{1} \wedge \ldots \wedge C_{m}$ be a Boolean formula in 3CNF over variables x_{1}, \ldots, x_{n}
- compute from φ a regular expression: $f(\varphi)=\left(\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}\right)$

Regular Expression Equivalence

Remember yesterday's teaser! A regular expression over $\{0,1\}$ is defined by

$$
r::=0|1| r r|r| r|r \cap r| r^{*}
$$

The language defined by r is written $\mathcal{L}(r)$.

- let $\varphi=C_{1} \wedge \ldots \wedge C_{m}$ be a Boolean formula in 3CNF over variables x_{1}, \ldots, x_{n}
- compute from φ a regular expression: $f(\varphi)=\left(\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}\right)$
- $\alpha_{i}=\gamma_{i 1} \ldots \gamma_{i n}$

Regular Expression Equivalence

Remember yesterday's teaser! A regular expression over $\{0,1\}$ is defined by

$$
r::=0|1| r r|r| r|r \cap r| r^{*}
$$

The language defined by r is written $\mathcal{L}(r)$.

- let $\varphi=C_{1} \wedge \ldots \wedge C_{m}$ be a Boolean formula in 3CNF over variables x_{1}, \ldots, x_{n}
- compute from φ a regular expression: $f(\varphi)=\left(\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}\right)$
- $\alpha_{i}=\gamma_{i 1} \ldots \gamma_{i n}$
- $\gamma_{i j}= \begin{cases}0 & x_{j} \in C_{i} \\ 1 & \frac{x_{j}}{} \in C_{i} \\ (0 \mid 1) & \text { otherwise }\end{cases}$

Regular Expression Equivalence

Remember yesterday's teaser! A regular expression over $\{0,1\}$ is defined by

$$
r::=0|1| r r|r| r|r \cap r| r^{*}
$$

The language defined by r is written $\mathcal{L}(r)$.

- let $\varphi=C_{1} \wedge \ldots \wedge C_{m}$ be a Boolean formula in 3CNF over variables x_{1}, \ldots, x_{n}
- compute from φ a regular expression: $f(\varphi)=\left(\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}\right)$
- $\alpha_{i}=\gamma_{i 1} \ldots \gamma_{i n}$
- $\gamma_{i j}= \begin{cases}0 & x_{j} \in C_{i} \\ 1 & \overline{x_{j}} \in C_{i} \\ (0 \mid 1) & \text { otherwise }\end{cases}$
- example: $(x \vee y \vee \bar{z}) \wedge(\bar{y} \vee z \vee w)$ transformed to (001(0|1))| (0|1)100)

Regular Expression Equivalence

Remember yesterday's teaser! A regular expression over $\{0,1\}$ is defined by

$$
r::=0|1| r r|r| r|r \cap r| r^{*}
$$

The language defined by r is written $\mathcal{L}(r)$.

- let $\varphi=C_{1} \wedge \ldots \wedge C_{m}$ be a Boolean formula in 3CNF over variables x_{1}, \ldots, x_{n}
- compute from φ a regular expression: $f(\varphi)=\left(\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}\right)$
- $\alpha_{i}=\gamma_{i 1} \ldots \gamma_{i n}$
- $\gamma_{i j}= \begin{cases}0 & \frac{x_{j} \in C_{i}}{x_{j} \in C_{i}} \\ 1 & (0 \mid 1) \\ \text { otherwise }\end{cases}$
- example: $(x \vee y \vee \bar{z}) \wedge(\bar{y} \vee z \vee w)$ transformed to (001(0|1))| (0|1)100)
- observe: φ is unsatisfiable iff $f(\varphi)=\{0,1\}^{n}$

Regular expressions and computational complexity

- previous slide establishes: 3 SAT \leq_{p} RegExpEq ${ }_{0}$
- that is: regular expression equivalence is coNP-hard

Regular expressions and computational complexity

- previous slide establishes: $\overline{3 S A T} \leq_{p}$ RegExpEq ${ }_{0}$
- that is: regular expression equivalence is coNP-hard
- it is coNP-complete for expressions without $*, \cap$
- because one needs to check for all expressions of length n whether they are included (test polynomial by NFA transformation)

Regular expressions and computational complexity

- previous slide establishes: $\overline{3 S A T} \leq_{p}$ RegExpEq ${ }_{0}$
- that is: regular expression equivalence is coNP-hard
- it is coNP-complete for expressions without $*, \cap$
- because one needs to check for all expressions of length n whether they are included (test polynomial by NFA transformation)
- the problem becomes PSPACE-complete when $*$ is added
- the problem becomes EXP-complete when $*, \cap$ is added

Agenda

- coNP $\sqrt{ }$
- the importance of P vs. NP vs. coNP
- neither in P nor NP-complete: Ladner's theorem
- wrap-up Lecture 1-6
- muddiest point

Open and known problems

OPEN

- $P=N P ?$
- NP = coNP?

Open and known problems

OPEN

- $P=N P ?$
- NP = coNP?

KNOWN

- if an NP-complete problem is in P, then $P=N P$
- P $\subseteq c o N P \cap N P$
- if $L \in \operatorname{coNP}$ and L NP-complete then NP $=$ coNP
- if $P=N P$ then $P=N P=c o N P$
- if $N P \neq$ coNP then $P \neq N P$
- if EXP \neq NEXP then $P \neq N P$ (equalities scale up, inequalities scale down)

What if $P=N P ?$

- one of the most important open problems
- computational utopia
- SAT has polynomial algorithm
- 1000s of other problems, too (due to reductions, completeness)
- finding solutions is as easy as verifying them
- guessing can be done deterministically
- decryption as easy as encryption
- randomization can be de-randomized

What if NP = coNP

Problems have short certificates that don't seem to have any!

- like tautology, unsatisfiability
- like unsatisfiable ILPs
- like regular expression equivalence

How to cope with NP-complete problems?

- ignore (see SAT), it may still work
- modify your problem (2SAT, 2Coloring)
- NP-completeness talks about worst cases and exact solutions
\rightarrow try average cases
\rightarrow try approximations
- randomize
- explore special cases (TSP)

In praise of reductions

- reductions help, when lower bounds are hard to come by
- reductions helped to prove NP-completeness for 1000s of natural problems
- in fact, most natural problems (exceptions are Factoring and Iso) are either in P or NP-complete
- but, unless $\mathrm{P}=\mathrm{NP}$, there exist such problems

Agenda

- coNP $\sqrt{ }$
- the importance of P vs. NP vs. coNP \checkmark
- neither in P nor NP-complete: Ladner's theorem
- wrap-up Lecture 1-6
- muddiest point

Ladner's Theorem

P/NP intermediate languages exist!

Theorem (Ladner)
If $\mathrm{P} \neq \mathrm{NP}$ then there exists a language $L \subseteq \mathrm{NP} \backslash \mathrm{P}$ that is not NP-complete.

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{1^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{n^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

- now define a function H and fix $S A T_{H}$

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{1^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

- now define a function H and fix $S A T_{H}$
- $H(n)$ is
- the smallest $i<\log \log n$ such that

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{1^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

- now define a function H and fix $S A T_{H}$
- $H(n)$ is
- the smallest $i<\log \log n$ such that
- $\forall x \in\{0,1\}^{*}$ with $|x| \leq \log n$

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{1^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

- now define a function H and fix $S A T_{H}$
- $H(n)$ is
- the smallest $i<\log \log n$ such that
- $\forall x \in\{0,1\}^{*}$ with $|x| \leq \log n$
- M_{i} outputs $\operatorname{SAT}_{H}(x)$

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{1^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

- now define a function H and fix $S A T_{H}$
- $H(n)$ is
- the smallest $i<\log \log n$ such that
- $\forall x \in\{0,1\}^{*}$ with $|x| \leq \log n$
- M_{i} outputs $S A T_{H}(x)$
- within i|x|' steps

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{n^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

- now define a function H and fix $S A T_{H}$
- $H(n)$ is
- the smallest $i<\log \log n$ such that
- $\forall x \in\{0,1\}^{*}$ with $|x| \leq \log n$
- M_{i} outputs SAT $_{H}(x)$
- within i|x|' steps
- M_{i} is the i-th TM (in enumeration of TM descriptions)

Proof - essential steps

- let $F: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- define SAT $_{F}$ to be

$$
\left\{\varphi 01^{n^{H(n)}} \mid \varphi \in \text { SAT, } n=|\varphi|\right\}
$$

- now define a function H and fix $S A T_{H}$
- $H(n)$ is
- the smallest $i<\log \log n$ such that
- $\forall x \in\{0,1\}^{*}$ with $|x| \leq \log n$
- M_{i} outputs SAT $_{H}(x)$
- within i|x|' steps
- M_{i} is the i-th TM (in enumeration of TM descriptions)
- if no such i exists then $H(n)=\log \log n$

Proof - essential steps

Using the definition of $S A T_{H}$ one can show

1. $S A T_{H} \in \mathrm{P} \Leftrightarrow H(n) \in O(1)$
2. $S A T_{H} \notin P$ implies $\lim _{n \rightarrow \infty} H(n)=\infty$

Proof - essential steps

Using the definition of $S A T_{H}$ one can show

1. $S A T_{H} \in \mathrm{P} \Leftrightarrow H(n) \in O(1)$
2. $S A T_{H} \notin \mathrm{P}$ implies $\lim _{n \rightarrow \infty} H(n)=\infty$

If $S A T_{H} \in P$, then $H(n) \leq C$ for some constant. This implies that SAT is also in P, which implies $P=N P$ (padding). Contradiction!

Proof - essential steps

Using the definition of $S A T_{H}$ one can show

1. $S A T_{H} \in P \Leftrightarrow H(n) \in O(1)$
2. $S A T_{H} \notin \mathrm{P}$ implies $\lim _{n \rightarrow \infty} H(n)=\infty$

If $S A T_{H} \in P$, then $H(n) \leq C$ for some constant. This implies that SAT is also in P , which implies $\mathrm{P}=\mathrm{NP}$ (padding). Contradiction!

If $S A T_{H}$ is NP-complete, then there is a reduction from SAT to $S A T_{H}$ in time $O\left(n^{i}\right)$ for some constant. For large n it maps SAT instances of size n to $S A T_{H}$ instances of size smaller than $n^{H(n)}$. This implies $S A T \in P$.
Contradiction!

What you should know by now

- deterministic TMs capture the inuitive notion of algorithms and computability
- universal TM ~ general-purpose computer or an interpreter
- some problems are uncomputable aka. undecidable, like the halting problem
- this is proved by diagonalization
- complexity class P captures tractable problems
- P is robust under TM definition tweaks (tapes, alphabet size, obliviousness, universal simulation)
- non-deterministic TMs can be simulated by TM in exponential time
- NP ~ non-det. poly. time ~ polynomially checkable certificates

What you should know by now

- NP ~ non-det. poly. time ~ polynomially checkable certificates
- reductions allow to define hardness and completeness of problems
- complete problems are the hardest within a class, if they can be solved efficiently the whole class can
- NP complete problems: 3SAT (by Cook-Levin); Indset, 3-Coloring, ILP (by reduction from 3SAT)
- SAT is practically useful and feasible
- coNP complete problems: Tautology, star-free regular expression equivalence
- probably there are problems neither in P nor NP-complete (Ladner)

What's next?

- space classes
- space and time hierarchy theorems
- generalization of NP and coNP: polynomial hierarchy
- probabilistic TMs, randomization
- complexity and proofs
- descriptive complexity

Agenda

- coNP $\sqrt{ }$
- the importance of P vs. NP vs. coNP \checkmark
- neither in P nor NP-complete: Ladner's theorem \checkmark
- wrap-up Lecture 1-6 \checkmark
- muddiest point

