
Complexity Theory

Jörg Kreiker

Chair for Theoretical Computer Science
Prof. Esparza

TU München

Summer term 2010

1

Lecture 5

NP-completeness (2)

2

Cook-Levin

Teaser

A regular expression over {0, 1} is defined by

r ::= 0 | 1 | r |r | r∗

The language defined by r is written L(r).

What is the computational complexity of

• deciding whether two regular expressions are equivalent, that
is L(r1) = L(r2)?

• deciding whether a regular expression is universal, that is
L(r) = {0, 1}∗?

• deciding the same for star-free regular expressions?

3

Cook-Levin

Agenda

• Cook-Levin

• SAT demo
• see old friends

• 0/1−ILP
• Indset
• 3−Coloring

• teaser update

4

Cook-Levin

Cook-Levin: 3SAT is NP-complete

• 3SAT ∈ NP X
• 3SAT is NP-hard

• choose L ∈ NP arbitrary, L ⊆ {0, 1}∗
• find reduction f from L to 3SAT

• ∀x ∈ {0, 1}∗: x ∈ L ⇔ f(x) ∈ 3SAT iff ϕx is satisfiable
• f is polynomial time computable

5

Cook-Levin

TMs for L and f

L ∈ NP iff there exists a TM M that runs in time T and there is a
polynomial p such that

∀x ∈ L ∃u ∈ {0, 1}p(|x |) M(x, u) = 1⇔ x ∈ L

Assumptions

• fix n ∈ N and x ∈ {0, 1}n arbitrary

• m = n + p(n)

• M = (Γ,Q , δ)

• M is oblivious

• M has two tapes

• define TM Mf that takes M, T , p, x and outputs ϕx

6

Cook-Levin

Mf exploits obliviousness

1. simulate M on 0n+p(n) for T(n + p(n)) steps
2. for each 1 ≤ i ≤ T(n + p(n)) store

• inputpos(i): position of input head after i steps
• prev(i): previous step when work head was here (default 1)

3. compute and output ϕx

It does all this in time polynomial in n!

7

Cook-Levin

Variables of ϕx

• y1, . . . , yn, yn+1, . . . yn+p(n)

• to encode the read-only input tape
• y1, . . . , yn determined by x
• yn+1, . . . yn+p(n) will be certificate

•

z1 z2 . . . zc−1 zc

zc+1 zc+2 . . . z2c−1 z2c
...

...

zc(T(m)−1)+1 zcT(m)

• each row a snapshot
• needs c − 2 bits to encode state q (independent of x)

8

Cook-Levin

Snapshot si = 〈q, 0, 1〉

• state of M at step i, input and work symbol currently read

Accepting computation of M on 〈x, u〉 is a sequence of T(m)
snapshots such that

• first snapshot s1 is 〈qstart ,B,�〉

• last snapshot sT(m) has state qhalt and ouputs 1
• si+1 computed from

• δ
• si
• yinputpos(i+1)

• sprev(i+1)

9

Cook-Levin

ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4

1. relate x and y1, . . . , yn:
∧

1≤i≤n xi = yi , where
x = y ⇔ (x ∨ y) ∧ (x ∨ y)

→ size 4n

2. relate z1, . . . , zc with 〈qstart ,B,�〉

→ size O(c2c) (CNF, independent of |x |)

3. relate zc(T(m)−1)+1, . . . , zcT(m) with accepting snapshot
→ analogous

4. relate zci+1, . . . , zc(i+1) (snapshot si+1) with
• yinputpos(i+1)

• zc(i−1)+1, . . . , zci−2 (state of snapshot si)
• zprev(i) (next work tape symbol, from snapshot sprev(i))
• CNF formula over 2c variables, size O(c22c)

Polynomial in n!

10

Cook-Levin

Stop!

• |ϕx | polynomial in n

• if ϕx is satisfiable, the satisfying assignment yields certificate
yn+1, . . . yn+p(n)

• if a certificate exists in {0, 1}p(n), we get a satisfying assignment

• Mf can output ϕx in polynomial time

⇒ reduction

• but: not to 3SAT

11

Cook-Levin

From CNF to 3CNF

As a last polynomial step, Mf applies the following transformation for
each clause

u1 ∨ u2 ∨ . . . ∨ uk

{

(u1 ∨ u2 ∨ x1)
∧ (x1 ∨ u3 ∨ x2)
∧ (x2 ∨ u4 ∨ x3)
. . .

∧ (xk−2 ∨ uk−1 ∨ uk)

Each clause with k variables transformed into equivalent k − 2
3-clauses with 2k − 2 variables. All xi fresh.
Example. x ∨ y ∨ z ∨ w becomes x ∨ y ∨ q and q ∨ z ∨ w.

12

Cook-Levin

What you need to remember

• for each L ∈ NP take TM M deciding L in polynomial time

• define TM Mf computing a reduction to formula ϕx for each
input

• due to obliviousness Mf pre-computes head positions and
every computation takes time T(n + p(n)) steps

• and is a sequence of snapshots 〈q, 0, 1〉
• ϕ has four parts

• correct input x, u with u being the certificate
• correct starting snapshot
• correct halting snapshot
• how to go from si to si+1

• finally: CNF transformed to 3CNF

13

Cook-Levin

Agenda

• Cook-Levin X

• SAT demo
• see old friends

• 0/1−ILP
• Indset
• 3−Coloring

• teaser update

14

SAT

So 3SAT is intractable?

• if P , NP, no polynomial time algorithm for SAT

• contrapositive: if you find one, you prove P = NP
• every problem in NP solvable by exhaustive search for

certificates

• which implies NP ⊆ PSPACE (try each possible re-using
space)

15

SAT

SAT is easy!

• well-researched problem

• has its own conference

• 1000s of tools, academic and commercial
• extremely useful for modelling

• verification
• planning and scheduling
• AI
• games (Sudoku!)

• useful for reductions due to low combinatorial complexity

• satlive.org: solvers, jobs, competitions

16

SAT

Demo

• www.sat4j.org

• two termination problems from string/term-rewriting

• 10000s of variables, millions of clauses

• solvable in a few seconds!

17

SAT

Agenda

• Cook-Levin X

• SAT demo X
• see old friends

• 0/1−ILP
• Indset
• 3−Coloring

• teaser update

18

More NP-complete problems

More reductions from 3SAT

We will now describe reductions from 3SAT to

• 0/1−ILP: the set of satisfiable sets of integer linear programs
with boolean solutions

• langIndset = {〈G, k 〉 |
G has independent set of size at leastk }

• 3−Coloring = {G | G is 3-colorable}

This establishes NP-hardness for all of the problems. Of course,
they are easily in NP as well, hence complete.

19

More NP-complete problems

3SAT ≤p 0/1−ILP

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ w) ∧ (x ∨ y ∨ w)

x + (1 − y) + z ≥ 1
x + (1 − y) + (1 − z) ≥ 1
(1 − x) + (1 − y) + w ≥ 1
(1 − x) + y + (1 − w) ≥ 1

• f(x) = x

• f(x) = (1 − x)

• f(u1 ∨ . . . ∨ uk) = f(u1) + . . .+ f(uk) ≥ 1

• linear reduction

• ϕ satisfiable iff f(ϕ) has boolean solution

20

More NP-complete problems

3SAT ≤p Indset

• given: formula ϕ with m clauses of form Ci = ui1 ∨ ui2 ∨ ui3

• reduce to graph G = (V ,E), such that each clause gets a node
per satisfying assignment
• V = {Cai

i | a : vars(Ci)→ {0, 1},Ci holds under assignment ai}

• edges denote conflicting assignments
• E = {{Ca

i ,C
a′
i′ } | i , i′ ∈ [m],∃x.a(x) , a′(x)}

• G has 7m nodes and O(m2) edges and can be computed in
polynomial time

21

More NP-complete problems

3SAT ≤p Indset

• ϕ is satisfiable

⇒ exists assignment a : X → {0, 1} that makes ϕ true

⇒ a makes every clause true

⇒ {Ca |vars(i)
i | 1 ≤ i ≤ m} is an independent set of size m

• G has an independent set of size m

⇒ ind. set covers all clauses

⇒ ind. set yields composable, partial assignments per clause

⇒ ϕ is satisfiable

22

More NP-complete problems

3SAT ≤p 3−Coloring

• given: formula ϕ with m clauses of form Ci = ui1 ∨ ui2 ∨ ui3

• reduce to graph G = (V ,E)
• V is the union of

• X ∪ X to capture assignments
• special nodes {u, v}
• one little house per clause with 5 nodes:
{vij , ai , bi | i ∈ [m], j ∈ [3]}

• E comprised of
• edge {u, v}
• for each literal in each clause, a connection to the assignment

graph: {{uij , vij} | i ∈ [m], j ∈ [3]}
• house edges:
{{v , ai}, {v , bi}, {vi1, ai}, {vi1, bi}, {vi2, ai}, {vi2, vi3}, {vi2, bi} | i ∈ [m]}

• G has 2n + 5m + 2 nodes and O(m2) edges and can be
computed in polynomial time

• three colors: {red, true, false}
23

More NP-complete problems

3SAT ≤p 3−Coloring

• ϕ is satisfiable,

⇒ there is an assignment a : X → {0, 1} that makes every clause
true

⇒ coloring u red, v false, and x true iff a(x) = 1 leads to a
correct 3-coloring

• G is 3-colorable

• wlog. assume u is red and v is false

• assume there is a clause j such that all literals are colored false

⇒ vj2 and vj3 are colored true and red

⇒ aj and bj are colored true and red

⇒ vj1 colored false, which is a contradiction, because it is
connected to a false literal

24

Summary

What have you learnt?

• SAT is NP-complete

• SAT is practically feasible

• SAT has lots of academic and industrial applications

• SAT can be reduced to independent set, 3-coloring and
boolean ILP, which makes those NP-hard

• up next: coNP, Ladner

25

Summary

Can you guess now?

What is the computational complexity of

• deciding whether two regular expressions are equivalent, that
is L(r1) = L(r2)?

• deciding whether a regular expression is universal, that is
L(r) = {0, 1}∗?

• deciding the same for star-free regular expressions?

• what about the set of formulas, for which all assignments
satisfy? certificates?

solution tomorrow

26

	Cook-Levin
	SAT
	More NP-complete problems
	Summary

