Complexity Theory

Jörg Kreiker

Chair for Theoretical Computer Science Prof. Esparza TU München

Summer term 2010

Lecture 5 NP-completeness (2)

Teaser

A regular expression over {0, 1} is defined by

 $r ::= 0 | 1 | r|r | r^*$

The language defined by *r* is written $\mathcal{L}(r)$.

What is the computational complexity of

- deciding whether two regular expressions are equivalent, that is
 £(r1) = £(r2)?
- deciding whether a regular expression is universal, that is

 \u03c0 (r) = {0, 1}*?
- deciding the same for star-free regular expressions?

Agenda

- Cook-Levin
- SAT demo
- see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring
- teaser update

Cook-Levin: 3SAT is NP-complete

- 3SAT ∈ NP √
- 3SAT is NP-hard
 - choose $L \in \mathbb{NP}$ arbitrary, $L \subseteq \{0, 1\}^*$
 - find reduction f from L to 3SAT
 - $\forall x \in \{0, 1\}^*$: $x \in L \Leftrightarrow f(x) \in 3$ SAT iff φ_x is satisfiable
 - f is polynomial time computable

TMs for L and f

 $L \in NP$ iff there exists a TM *M* that runs in time *T* and there is a polynomial *p* such that

 $\forall x \in L \ \exists u \in \{0, 1\}^{p(|x|)} \ M(x, u) = 1 \Leftrightarrow x \in L$

Assumptions

- fix $n \in \mathbb{N}$ and $x \in \{0, 1\}^n$ arbitrary
- m = n + p(n)
- $M = (\Gamma, Q, \delta)$
- *M* is oblivious
- M has two tapes
- define TM M_f that takes M, T, p, x and outputs φ_x

M_f exploits obliviousness

- **1.** simulate *M* on $0^{n+p(n)}$ for T(n+p(n)) steps
- **2.** for each $1 \le i \le T(n + p(n))$ store
 - inputpos(i): position of input head after i steps
 - prev(i): previous step when work head was here (default 1)
- **3.** compute and output φ_X

It does all this in time polynomial in *n*!

Variables of φ_{x}

• $y_1,\ldots,y_n,y_{n+1},\ldots,y_{n+p(n)}$

- to encode the read-only input tape
- *y*₁,..., *y_n* determined by *x*
- $y_{n+1}, \ldots, y_{n+p(n)}$ will be certificate

	<i>z</i> ₁	Z 2		Z _{c-1}	Z _c
•	z _{c+1}	Z _{C+2}	••••	Z _{2c-1}	Z _{2c}
	÷				:
	$Z_{c(T(m)-1)+1}$				Z _{cT(m)}

- each row a snapshot
- needs c 2 bits to encode state q (independent of x)

Snapshot $s_i = \langle q, 0, 1 \rangle$

• state of M at step i, input and work symbol currently read

Accepting computation of *M* on $\langle x, u \rangle$ is a sequence of T(m) snapshots such that

- first snapshot s_1 is $\langle q_{start}, \triangleright, \Box \rangle$
- last snapshot s_{T(m)} has state q_{halt} and ouputs 1
- s_{i+1} computed from
 - δ
 - S_i
 - *Y*inputpos(i+1)
 - **S**prev(i+1)

$\varphi_{x} = \varphi_{1} \land \varphi_{2} \land \varphi_{3} \land \varphi_{4}$

- 1. relate x and y_1, \ldots, y_n : $\bigwedge_{1 \le i \le n} x_i = y_i$, where $x = y \Leftrightarrow (x \lor \overline{y}) \land (\overline{x} \lor y)$
 - \rightarrow size 4n
- **2.** relate z_1, \ldots, z_c with $\langle q_{start}, \triangleright, \Box \rangle$

 \rightarrow size $O(c2^c)$ (CNF, independent of |x|)

- **3.** relate $z_{c(T(m)-1)+1}, \ldots, z_{cT(m)}$ with accepting snapshot \rightarrow analogous
- **4.** relate $z_{ci+1}, \ldots, z_{c(i+1)}$ (snapshot s_{i+1}) with
 - *Y*inputpos(i+1)
 - $Z_{c(i-1)+1}, \ldots, Z_{ci-2}$ (state of snapshot s_i)
 - z_{prev(i)} (next work tape symbol, from snapshot s_{prev(i)})
 - CNF formula over 2c variables, size O(c2^{2c})

Polynomial in n!

Stop!

- $|\varphi_x|$ polynomial in *n*
- if φ_X is satisfiable, the satisfying assignment yields certificate $y_{n+1}, \dots, y_{n+p(n)}$
- if a certificate exists in $\{0, 1\}^{p(n)}$, we get a satisfying assignment
- M_f can output φ_x in polynomial time
- \Rightarrow reduction
 - but: not to 3SAT

From CNF to 3CNF

As a last polynomial step, M_f applies the following transformation for each clause

 $U_1 \vee U_2 \vee \ldots \vee U_k$ $(U_1 \vee U_2 \vee X_1)$ $\land \quad (\overline{X_1} \vee U_3 \vee X_2)$ $\land \quad (\overline{X_2} \vee U_4 \vee X_3)$ \ldots $\land \quad (\overline{X_{k-2}} \vee U_{k-1} \vee U_k)$

Each clause with k variables transformed into equivalent k - 23-clauses with 2k - 2 variables. All x_i fresh. Example. $x \lor \overline{y} \lor \overline{z} \lor w$ becomes $x \lor \overline{y} \lor q$ and $\overline{q} \lor \overline{z} \lor w$.

What you need to remember

- for each $L \in \mathbb{NP}$ take TM *M* deciding *L* in polynomial time
- define TM M_f computing a reduction to formula φ_x for each input
- due to obliviousness M_f pre-computes head positions and every computation takes time T(n + p(n)) steps
- and is a sequence of snapshots (q, 0, 1)
- φ has four parts
 - correct input *x*, *u* with *u* being the certificate
 - correct starting snapshot
 - correct halting snapshot
 - how to go from s_i to s_{i+1}
- finally: CNF transformed to 3CNF

Agenda

- Cook-Levin \checkmark
- SAT demo
- see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring
- teaser update

So 3SAT is intractable?

- if P ≠ NP, no polynomial time algorithm for SAT
- contrapositive: if you find one, you prove P = NP
- every problem in NP solvable by exhaustive search for certificates
- which implies NP ⊆ PSPACE (try each possible re-using space)

- well-researched problem
- has its own conference
- 1000s of tools, academic and commercial
- extremely useful for modelling
 - verification
 - planning and scheduling
 - Al
 - games (Sudoku!)
- useful for reductions due to low combinatorial complexity
- satlive.org: solvers, jobs, competitions

- www.sat4j.org
- two termination problems from string/term-rewriting
- 10000s of variables, millions of clauses
- solvable in a few seconds!

Agenda

- Cook-Levin \checkmark
- SAT demo √
- see old friends
 - 0/1-ILP
 - Indset
 - 3-Coloring
- teaser update

More reductions from 3SAT

We will now describe reductions from 3SAT to

- 0/1-ILP: the set of satisfiable sets of integer linear programs with boolean solutions
- langIndset = { (G, k) |
 G has independent set of size at leastk }
- $3-\text{Coloring} = \{G \mid G \text{ is } 3\text{-colorable}\}$

This establishes **NP**-hardness for all of the problems. Of course, they are easily in **NP** as well, hence complete.

$3SAT \leq_p 0/1 - ILP$

 $(x \lor \overline{y} \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor w) \land (\overline{x} \lor y \lor \overline{w})$

$$\begin{array}{rrrr} x + (1 - y) + z & \geq & 1 \\ x + (1 - y) + (1 - z) & \geq & 1 \\ (1 - x) + (1 - y) + w & \geq & 1 \\ (1 - x) + y + (1 - w) & \geq & 1 \end{array}$$

- f(x) = x
- $f(\overline{x}) = (1 x)$
- $f(u_1 \vee ... \vee u_k) = f(u_1) + ... + f(u_k) \ge 1$
- linear reduction
- φ satisfiable iff $f(\varphi)$ has boolean solution

3SAT ≤_p Indset

- given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E), such that each clause gets a node per satisfying assignment

• $V = \{C_i^{a_i} \mid a : vars(C_i) \rightarrow \{0, 1\}, C_i \text{ holds under assignment } a_i\}$

- edges denote conflicting assignments
 - $E = \{\{C_i^a, C_{i'}^{a'}\} \mid i \neq i' \in [m], \exists x.a(x) \neq a'(x)\}$
- G has 7m nodes and O(m²) edges and can be computed in polynomial time

3SAT ≤_p Indset

- φ is satisfiable
- \Rightarrow exists assignment $a: X \rightarrow \{0, 1\}$ that makes φ true
- ⇒ a makes every clause true

 $\Rightarrow \{C_i^{a|vars(i)} \mid 1 \le i \le m\}$ is an independent set of size m

- G has an independent set of size m
- \Rightarrow ind. set covers all clauses
- ⇒ ind. set yields composable, partial assignments per clause
- $\Rightarrow \varphi$ is satisfiable

$3SAT \leq_p 3-Coloring$

- given: formula φ with *m* clauses of form $C_i = u_{i1} \vee u_{i2} \vee u_{i3}$
- reduce to graph G = (V, E)
- V is the union of
 - $X \cup \overline{X}$ to capture assignments
 - special nodes {u, v}
 - one little house per clause with 5 nodes: $\{v_{ij}, a_i, b_i \mid i \in [m], j \in [3]\}$
- E comprised of
 - edge {*u*, *v*}
 - for each literal in each clause, a connection to the assignment graph: {{u_{ij}, v_{ij}} | i ∈ [m], j ∈ [3]}
 - house edges:

 $\{\{v, a_i\}, \{v, b_i\}, \{v_{i1}, a_i\}, \{v_{i1}, b_i\}, \{v_{i2}, a_i\}, \{v_{i2}, v_{i3}\}, \{v_{i2}, b_i\} \mid i \in [m]\}$

- G has 2n + 5m + 2 nodes and $O(m^2)$ edges and can be computed in polynomial time
- three colors: {red, true, false}

$3SAT \leq_p 3-Coloring$

- φ is satisfiable,
- ⇒ there is an assignment $a : X \rightarrow \{0, 1\}$ that makes every clause true
- ⇒ coloring *u* red, *v* false, and *x* true iff a(x) = 1 leads to a correct 3-coloring
 - G is 3-colorable
 - wlog. assume *u* is red and *v* is false
 - assume there is a clause j such that all literals are colored false
- \Rightarrow v_{j2} and v_{j3} are colored true and red
- \Rightarrow a_i and b_j are colored true and red
- \Rightarrow v_{j1} colored false, which is a contradiction, because it is connected to a false literal

Summary

What have you learnt?

- SAT is NP-complete
- SAT is practically feasible
- SAT has lots of academic and industrial applications
- SAT can be reduced to independent set, 3-coloring and boolean ILP, which makes those NP-hard
- up next: coNP, Ladner

Summary

Can you guess now?

What is the computational complexity of

- deciding whether two regular expressions are equivalent, that is $\mathcal{L}(r_1) = \mathcal{L}(r_2)$?
- deciding whether a regular expression is universal, that is

 \u03c0 (r) = {0, 1}*?
- deciding the same for star-free regular expressions?
- what about the set of formulas, for which all assignments satisfy? certificates?

solution tomorrow