Complexity Theory

Jörg Kreiker
Chair for Theoretical Computer Science
Prof. Esparza
TU München

Summer term 2010

Lecture 22

Models of Parallel Computation

Exam

- have you all registered?
- date and time: August 2 at 9.30-11.30
- lecture hall: MW 2050
- duration: 120 minutes
- no auxiliary material allowed
- 40 points, grading according to table on website
- final bonuses on website one week prior to exam
- inspection:
- Thursday, August 5
- 10.00-11.00
- room 03.09.014

Goal and plan

Goal

- introduce two models of parallel computation
- understand why they are equivalent

Plan

- PRAM: parallel random access machine
- circuits
- some complexity class definitions

Random access machine

RAM: more realistic model of sequential computation, which can be simulated by standard TMs with polynomial overhead.

- computation unit with user-defined program
- read-only input tape, write-only output tape, unbounded number of local memory cells
- memory cells can hold unbounded integers
- instructions include
- moving data between memory cells
- comparisons and branches
- simple arithmetic operations
- all operations take unit time

Parallel random access machine

PRAM: parallel extension of RAM

- unbounded collection of RAM processors without tapes: $P_{0}, P_{1}, P_{2}, \ldots$
- unbounded collection of shared memory cells: $M[0], M[1], M[2], \ldots$
- each P_{i} has its own local memory (registers)
- input: n items stored in $M[0], \ldots, M[n-1]$
- output stored on some designated part of memory
- instructions execute in 3-phase cycles
- read from shared memory
- local computation
- write to shared memory
- processors execute cycles synchronously
- P_{0} starts and halts execution

Read/write conflicts

It may happen that several processors want to read from or write to the same memory cell in one cycle.

Three policies:
EREW : exclusive read/exclusive write
CREW : concurrent read/exclusive write allows for simultaneous reads

CRCW : simultaneous read and write allowed

Practical concerns

- idealized: PRAMs are an abstract, idealized formalism
- unbounded integers
- communication between any two processors in constant time due to shared memory (in reality: interconnection networks)
- too many processors
- CRCW and CREW hard to build technically but easier to design algorithms
- still useful as benchmark
- if there is no good PRAM algorithm, probably the problem is hard to parallelize

Time and space complexity

- time complexity: number of steps of P_{0}
- space complexity: number of shared memory cells accessed
- one can show that the weakest PRAM (EREW) can simulate the strongest with logarithmic overhead; cf. search-example
- efficient parallel computation
- polynomially many processors
- polylogarithmic time, where polylog $(n)=\bigcup_{k \geq 1} \log ^{k} n$
- problems with efficient parallel algorithms are said to be in NC
- NC is robust wrt different PRAM models (and circuits)

Example: Search

Example

Given n items on the shared memory tape and $p+1<n$ processors. For some $x \in \mathbb{N} P_{0}$ wants to know, whether there exists an $0 \leq i<n$ such that $M[i]=x$.

Solution (high level):

1. P_{0} publishes x
2. for $1 \leq i \leq p$ each P_{i} searches through $M\left[\left\lceil\frac{n}{p}\right\rceil(i-1)\right], \ldots, M\left[\left\lceil\frac{n}{p}\right\rceil i-1\right]$
3. each P_{i} announces its search result

Analysis

Step 2 need n / p parallel time independently of PRAM model.
Step 1

- needs $O(1)$ time in CRCW and CREW since P_{0} can simply write x on the shared tape which everybody can read simultaneously
- needs $\log p$ steps in EREW by binary broadcast tree

Step 3

- needs $O(1)$ time in CRCW only, where all successful processors indicate success in the same memory cell
- otherwise, we need $\log p$ time to perform a parallel reduction

Other problems in NC

Many practical problems are known to be in NC, for details, take some class on parallel algorithms.

- sorting
- matrix multiplication
- expression evaluation
- connected components of graphs
- string matching

Signpost

Just seen:

- RAMs and PRAMs
- CRCW, CREW, EREW
- simulations between models have at most logarithmic overhead
- efficient parallel ~ polylogarithmic (stable under different PRAM models)

Next:

- Boolean circuits as parallel model of computation
- equivalence with respect to efficient parallel algorithms of PRAM and circuits

Boolean Circuits

Definition

A Boolean circuit, C, is a directed acyclic graph with labeled nodes.

- the input nodes are labeled with a variable x_{i} or with a constant 0 or 1
- the gate nodes have fan-in $k>0$ are labeled with one of the Boolean functions
- $\wedge(\operatorname{fan}-\mathrm{in} k)$
- $\vee($ fan-in $k)$
- $\neg(f a n-i n 1)$
- the output nodes are labeled output and have fan-out 0

Given an assignment $\sigma:\{0,1\}^{m} \rightarrow\{0,1\}^{0}$ to the m variables, $C(\sigma)$ denotes the value of the o output nodes. We denote by size (C) the number of gates and by depth (C) the maximum distance from an input to an output. We distinguish circuits with and without a-priori bounds on fan-in.Wlog we assume that all negations appear in the innıit lavor only

Example: addition

Assume we want to add two n-bit integers, that is, we want circuits to compute $+:\{0,1\}^{2 n+1} \rightarrow\{0,1\}^{n+1}$

Ripple carry adder

- n sequential full adder
- depth: $O(n)$
- size: $O(n)$

Conditional sum adder

- depth: $O(\log n)$
- size: $O(n \log n)$

Carry lookahead adder

- depth: $O(\log n)$
- size: $O(n)$

Deciding languages with circuits

Definition

A language $L \subseteq\{0,1\}^{*}$ is said to be decided by a family of circuits $\left\{C_{n}\right\}$, where C_{i} takes i input variables, iff for all i holds: $C_{i}(x)=\chi_{L}(x)$, where $\chi_{L}(x)$ is 1 iff $x \in L$.

Definition

Let $d, s: \mathbb{N} \rightarrow \mathbb{N}$ be functions. We say that a family $\left\{C_{n}\right\}$ has depth d and size s if for all n

- $\operatorname{depth}\left(C_{n}\right) \leq d(n)$
- $\operatorname{size}\left(C_{n}\right) \leq s(n)$

Examples

Example (Parity)

Parity $=\left\{x \in\{0,1\}^{*} \mid x\right.$ has an odd number of 1 s$\}$

- circuits are binary trees of xor gates
- each xor-gate has depth 3
\Rightarrow logarithmic depth

Example (UHalt)

UHalt $=\left\{1^{n} \mid\right.$
n's binary expansion encodes a pair $\langle M, x\rangle$ such that M halts on $x\}$

- circuit family of linear size decides UHalt even though it is undecidable
- for each n with $1^{n} \in$ UHalt is a tree of and-gates
- otherwise, constant 0 circuit

On Uniformity

Problem on previous slide: the description of the circuit family is not computable.

Solution: uniformity

Definition (logspace uniform)
A family of polynomially-sized circuits, $\left\{C_{n}\right\}$ is logspace-uniform if there exists a logspace TM M such that for every n, $M\left(1^{n}\right)=\operatorname{desc}\left(C_{n}\right)$, where $\operatorname{desc}\left(C_{n}\right)$ is the description of C_{n}.

Remarks

- a description could be a list of gates along with type and predecessors
- the circuit family for Parity is logspace-uniform

Signpost

Just seen:

- circuit definition
- families of circuits decide languages
- there exist families of polynomial size deciding undecidable languages
\Rightarrow require logspace-uniformity

Next:

- circuits vs PRAMs

Circuits vs PRAMs

> For efficient parallel computations only: parallel time on PRAM \sim circuit depth number of processors \sim circuit size

circuits \rightarrow PRAM

- suppose L decided by family $\left\{C_{n}\right\}$ of polynomial size N and depth $O\left(\log ^{d} n\right)$
- a PRAM with n processors decides L :
- compute a description of C_{n}
- each circuit node \rightarrow one processor
- each processor computes its output and sends it to all other processors that need it (might require logarithmic overhead for non-PRAM models)
- parallel time ~ circuit depth
- circuit size \sim number of processors

Circuits vs PRAMs

> For efficient parallel computations only: parallel time on PRAM \sim circuit depth number of processors \sim circuit size

PRAM \rightarrow circuits

- circuit with $N \cdot D$ nodes in D layers
- the i-th node in the t-th layer performs computation of processor i at time t

NC and AC

Obviously, variations of PRAMs and circuits are robust wrt. polynomial size/number of processors and polylogarithmic depth/parallel run time motivating the following definition.
Definition (NC and AC)
Let $k \geq 0$. $L \in A C^{k}$ iff L is decided by a logspace-uniform family of circuits with polynomial size and depth $O\left(\log ^{k} n\right)$. If the family of circuits is of bounded fan-in, then $L \in N^{k}$.

- $N C=U_{k \geq 0} N C^{k}$
- $A C=U_{k \geq 0} A C^{k}$
- NC is the class of problems with efficient parallel solutions
- AC circuits cannot be build easily in hardware
- it is an open problem whether $\mathrm{P}=\mathrm{NC}$, that is, whether all problems in P are efficiently parallelizable (conjecture: no)
- Parity $\in \mathrm{NC}^{1}$ (but not in AC^{0})

Summary

- three variations of a PRAM
- uniform and non-uniform circuit families can decide languages
- efficiently parallelizable: NC
- circuits and PRAM are equivalent wrt NC problems

Up next: small depth circuits (AC and NC)

- their relation to well-known (space) complexity classes
- some lower bounds

