## **Complexity Theory**

Jörg Kreiker

Chair for Theoretical Computer Science Prof. Esparza TU München

Summer term 2010

Lecture 21 NP  $\subseteq$  PCP[poly(n), 1]

## Recap: Two views of the PCP theorem

| prob. checkable proofs | hardness of approximation |                                                    |  |  |  |
|------------------------|---------------------------|----------------------------------------------------|--|--|--|
| PCP verifier V         | $\leftrightarrow$         | CSP instance                                       |  |  |  |
| proof $\pi$            | $\leftrightarrow$         | variable assignment                                |  |  |  |
| π                      | $\leftrightarrow$         | number of vars in CSP                              |  |  |  |
| number of queries      | $\leftrightarrow$         | arity of constraints                               |  |  |  |
| number of random bits  | $\leftrightarrow$         | log <i>m</i> , where <i>m</i> is number of clauses |  |  |  |

## Goal and plan

#### Goal

- proof a weaker PCP theorem
- · learn interesing encoding/decoding schemes useful in such proofs

#### Plan

- questionnaire
- proof
  - an NP-complete language: Quadeq
  - Walsh-Hadamard encodings
  - a PCP[poly, 1] system for Quadeq
- summary: PCP and hardness of approximation

#### Weak PCP

Theorem **NP**  $\subseteq$  **PCP**[*poly*, 1]

**Proof:** It suffices to come up with a PCP system for one NP-complete language, where the verifier

- uses polynomially many random bits (exponentially long proofs)
- makes a constant number of queries to that proof

Plan:

- an NP-complete language: Quadeq
- Walsh-Hadamard encodings
- a PCP[poly, 1] system for Quadeq



All arithmetic today will be modulo 2, that is, over the field  $\{0, 1\}$ !

- 1 + 1 = 0
- $x^2 = x$
- x + y = x y

## Quadeq

- satisfiable quadratic equations over {0, 1}
- *n* variables/*m* equations
- no purely linear terms
- NP-complete (exercise!)

#### Example (Running example)

$$xy + xz = 1$$
  
 $y^2 + yz + z^2 = 1$   
 $x^2 + yx + z^2 = 0$ 

## Quadeq

- satisfiable quadratic equations over {0, 1}
- *n* variables/*m* equations
- no purely linear terms
- NP-complete (exercise!)

#### Example (Running example)

$$\begin{array}{rcl} xy + xz & = & 1 \\ y^2 + yz + z^2 & = & 1 \\ x^2 + yx + z^2 & = & 0 \end{array}$$

Solution: x = 1, y = 0, z = 1as a vector: **s** = (1 0 1)

#### Be smart, use vector notation

$$xy + xz = 1y2 + yz + z2 = 1x2 + yx + z2 = 0s = (1 0 1)$$

#### Be smart, use vector notation

$$xy + xz = 1y2 + yz + z2 = 1x2 + yx + z2 = 0s = (1 0 1)$$

vector notation: for a given  $m \times n^2$  matrix *A* and *m* vector **b** find solution  $\mathbf{u} = (x \ y \ z)$  such that

 $A(\mathbf{u}\otimes\mathbf{u})=\mathbf{b}$ 

| u⊗u        | x <sup>2</sup> | хy          | ХZ | yх | y <sup>2</sup> | уz | ZX | zy | $Z^2$ |   |
|------------|----------------|-------------|----|----|----------------|----|----|----|-------|---|
| U⊗U<br>S⊗S | 1              | 0           | 1  | 0  | 0              | 0  | 1  | 0  | 1     | b |
| Α          | 0              | 1           | 1  | 0  | 0              | 0  | 0  | 0  | 0     | 1 |
|            | 0              | 0           | 0  | 0  | 1              | 1  | 0  | 0  | 1     | 1 |
|            | 1              | 1<br>0<br>0 | 0  | 1  | 0              | 0  | 0  | 0  | 1     | 0 |

## **Overview**

- Quadeq is the language of satisfiable systems of quadratic equations over {0, 1}
- natural PCP system expects a solution u and checks whether it is valid
- but this yields superconstant number of queries!
- how can we encode a solution such that a constant number of queries suffices?

## **Overview**

- Quadeq is the language of satisfiable systems of quadratic equations over {0, 1}
- natural PCP system expects a solution u and checks whether it is valid
- but this yields superconstant number of queries!
- how can we encode a solution such that a constant number of queries suffices?
- use longer proofs!
- an NP-complete language: Quadeq √
- Walsh-Hadamard encodings
- a PCP[poly, 1] system for Quadeq

## PCP for Quadeq

#### Input: $m \times n^2$ matrix A, m vector **b**

# check that *f*, *g* are linear functions

Verifier

- 2. check that  $g = WH(\mathbf{u} \otimes \mathbf{u})$  where  $f = WH(\mathbf{u})$
- 3. check that *g* encodes a satisfying assignment

•  $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$ 

•  $\pi$  is a pair of linear functions  $\langle f, g \rangle$ , i.e. strings from  $\{0, 1\}^{2^n}$  and  $\{0, 1\}^{2^{n^2}}$ , resp.

Proof  $\pi$ 

• if u satisfies  $A(u \otimes u) = b$  then f = WH(u) and  $g = WH(u \otimes u)$  are Walsh-Hadamard encodings

#### Walsh-Hadamard encoding

#### **Definition (WH)**

Let  $\mathbf{u} \in \{0, 1\}^n$  be a vector. The Walsh-Hadamard encoding of  $\mathbf{u}$  written  $WH(\mathbf{u})$  is the truth table of the linear function  $f : \{0, 1\}^n \to \{0, 1\}$  where  $f(\mathbf{x}) = \mathbf{u} \odot \mathbf{x}$ . Furthermore  $(u_1 \dots u_n) \odot (x_1 \dots x_n) = \sum_{i=1}^n u_i x_i$ 

#### Walsh-Hadamard encoding

#### **Definition (WH)**

Let  $\mathbf{u} \in \{0, 1\}^n$  be a vector. The Walsh-Hadamard encoding of  $\mathbf{u}$  written  $WH(\mathbf{u})$  is the truth table of the linear function  $f : \{0, 1\}^n \to \{0, 1\}$  where  $f(\mathbf{x}) = \mathbf{u} \odot \mathbf{x}$ . Furthermore  $(u_1 \dots u_n) \odot (x_1 \dots x_n) = \sum_{i=1}^n u_i x_i$ 

#### Example

The solution to our running example is  $\mathbf{s} = (1 \ 0 \ 1)$ . We have

 $WH(\mathbf{s}) = (0\ 1\ 0\ 1\ 1\ 0\ 1\ 0)$ 

Note:  $|WH(\mathbf{u})| = 2^{|\mathbf{u}|}$ 

## **Properties (without proof)**

#### Random subsum principle

- if  $\mathbf{u} \neq \mathbf{v}$  then for 1/2 of the choices of  $\mathbf{x}$  we have  $\mathbf{u} \odot \mathbf{x} \neq \mathbf{v} \odot \mathbf{x}$
- if  $\mathbf{u} \neq \mathbf{v}$  then  $WH(\mathbf{u})$  and  $WH(\mathbf{v})$  differ on at least half their bits

## **Properties (without proof)**

#### Random subsum principle

- if  $\mathbf{u} \neq \mathbf{v}$  then for 1/2 of the choices of  $\mathbf{x}$  we have  $\mathbf{u} \odot \mathbf{x} \neq \mathbf{v} \odot \mathbf{x}$
- if  $\mathbf{u} \neq \mathbf{v}$  then  $WH(\mathbf{u})$  and  $WH(\mathbf{v})$  differ on at least half their bits

#### Local linearity testing

• we say that  $f, g: \{0, 1\}^n \rightarrow \{0, 1\}$  are  $\rho$ -close if

$$\Pr_{\mathbf{x}\in_{R}\{0,1\}^{n}}[f(\mathbf{x})=g(\mathbf{x})]\geq\rho$$

• if there exists a  $\rho > 1/2$  s.t.

 $Pr_{\mathbf{x},\mathbf{y}\in_{R}\{0,1\}^{n}}[f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})]\geq\rho$ 

then *f* is  $\rho$ -close to a linear function

## PCP for Quadeq

#### Input: $m \times n^2$ matrix A, m vector **b**

#### Verifier

#### Proof $\pi$

- check that f, g are linear functions
- 2. check that  $g = WH(\mathbf{u} \otimes \mathbf{u})$  where  $f = WH(\mathbf{u})$
- 3. check that *g* encodes a satisfying assignment

•  $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$ 

- $\pi$  is a pair of linear functions  $\langle f, g \rangle$ , i.e. strings from  $\{0, 1\}^{2^n}$  and  $\{0, 1\}^{2^{n^2}}$ , resp.
- if u satisfies  $A(u \otimes u) = b$  then f = WH(u) and  $g = WH(u \otimes u)$  are Walsh-Hadamard encodings

## Local linearity testing

- we test the linearity condition (f(x + y) = f(x) + f(y)) independently  $1/\delta > 2$  times, and accept if all tests pass
- we accept a linear function with probability 1
- if f is not  $1 \delta$ -close to a linear function
  - all tests are passed with probability at most  $(1 \delta)^{(1/\delta)}$
  - $\Rightarrow$  such a function is rejected with probability at least 1 1/e > 1/2
- for instance, we could make a 0.999 linearity test using 1000 trials

## Local decoding

- it might happen, that we accept non-linear functions that are very close to linear functions
- · in this case we treat them as if they were linear
- if we want to query f(x)
  - **1.** we choose  $\mathbf{x}' \in \{0, 1\}^n$  at random
  - 2. set x'' = x + x'
  - **3.** let y' = f(x') and y'' = f(x'')
  - **4.** output **y**' + **y**''
- this makes two queries instead of one
- and recovers the value of the closest linear function with high probability

## PCP for Quadeq

#### Input: $m \times n^2$ matrix A, m vector **b**

1. check that f, g are linear functions  $\checkmark$ 

**2.** check that  $g = WH(\mathbf{u} \otimes \mathbf{u})$  where  $f = WH(\mathbf{u})$ 

Verifier

3. check that *g* encodes a satisfying assignment

•  $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$ 

•  $\pi$  is a pair of linear functions  $\langle f, g \rangle$ , i.e. strings from  $\{0, 1\}^{2^n}$  and  $\{0, 1\}^{2^{n^2}}$ , resp.

Proof  $\pi$ 

• if u satisfies  $A(u \otimes u) = b$  then f = WH(u) and  $g = WH(u \otimes u)$  are Walsh-Hadamard encodings

### **Check WH encodings**

Test 10 times for random  $\mathbf{r}, \mathbf{r}' \in \{0, 1\}^n$ 

 $f(\mathbf{r})f(\mathbf{r}')=g(\mathbf{r}\otimes\mathbf{r}')$ 

#### **Check WH encodings**

Test 10 times for random  $\mathbf{r}, \mathbf{r}' \in \{0, 1\}^n$ 

 $f(\mathbf{r})f(\mathbf{r}')=g(\mathbf{r}\otimes\mathbf{r}')$ 

If the proof is correct we always accept:

$$f(\mathbf{r})f(\mathbf{r}') = (\sum_{i \in [n]} u_i r_i) (\sum_{j \in [n]} u_j r_j')$$
  
$$= \sum_{i,j \in [n]} u_i u_j r_i r_j'$$
  
$$= ((\mathbf{u} \otimes \mathbf{u}) \odot (\mathbf{r} \otimes \mathbf{r}'))$$
  
$$= g(\mathbf{r} \otimes \mathbf{r}')$$

### **Check WH encodings**

Test 10 times for random  $\mathbf{r}, \mathbf{r}' \in \{0, 1\}^n$ 

 $f(\mathbf{r})f(\mathbf{r}')=g(\mathbf{r}\otimes\mathbf{r}')$ 

If the proof is correct we always accept:

$$f(\mathbf{r})f(\mathbf{r}') = (\sum_{i \in [n]} u_i r_i) (\sum_{j \in [n]} u_j r_j')$$
  
$$= \sum_{i,j \in [n]} u_i u_j r_i r_j'$$
  
$$= ((\mathbf{u} \otimes \mathbf{u}) \odot (\mathbf{r} \otimes \mathbf{r}'))$$
  
$$= g(\mathbf{r} \otimes \mathbf{r}')$$

If the proof is wrong we reject with probability at least 1/4 by applying the random subsum principle twice, because in esence we compute rUr' and rWr' for different matrices U and W.

### PCP for Quadeq

#### Input: $m \times n^2$ matrix A, m vector **b**

# **1.** check that f, g are linear functions $\checkmark$

Verifier

- 2. check that  $g = WH(\mathbf{u} \otimes \mathbf{u})$  where  $f = WH(\mathbf{u}) \checkmark$
- **3.** check that *g* encodes a satisfying assignment

•  $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$ 

•  $\pi$  is a pair of linear functions  $\langle f, g \rangle$ , i.e. strings from  $\{0, 1\}^{2^n}$  and  $\{0, 1\}^{2^{n^2}}$ , resp.

Proof  $\pi$ 

• if u satisfies  $A(u \otimes u) = b$  then f = WH(u) and  $g = WH(u \otimes u)$  are Walsh-Hadamard encodings

## Is the assignment satisfying?

- for each of *m* equations we can check g(z) at some place z corresponding to the coefficients in matrix A
- but this is not constant queries!

## Is the assignment satisfying?

- for each of *m* equations we can check g(z) at some place z corresponding to the coefficients in matrix A
- but this is not constant queries!
- instead multiply each equation by a random bit and take the sum of all equations
- if g encodes a solution, we will always have a solution to the sum
- otherwise, we have a solution with probability 1/2 only

## Is the system in PCP[poly(n), 1]?

#### **1.** $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$

- 2. check that f, g are linear functions
  - $2(1-\delta) \cdot n$  random bits,  $2(1-\delta)$  queries
- **3.** check that  $g = WH(\mathbf{u} \otimes \mathbf{u})$  where  $f = WH(\mathbf{u})$ 
  - 20*n* random bits, 20 queries
- 4. check that g encodes a satisfying assignment
  - *m* random bits (one per equation), 1 query

## Is the system in PCP[poly(n), 1]?

#### **1.** $\pi \in \{0, 1\}^{2^n + 2^{n^2}}$

- 2. check that f, g are linear functions
  - $2(1-\delta) \cdot n$  random bits,  $2(1-\delta)$  queries
- **3.** check that  $g = WH(\mathbf{u} \otimes \mathbf{u})$  where  $f = WH(\mathbf{u})$ 
  - 20n random bits, 20 queries
- 4. check that g encodes a satisfying assignment
  - *m* random bits (one per equation), 1 query

## Yes!

## Conclusion

#### PCP and hardness of approximation

- computing approximate solutions to NP-hard problems is important
- the classical Cook-Levin reduction does not rule out efficient approximations
- many nontrivial approximation algorithms exist (2-app for metric TSP, knapsack, 2-app for vertex cover)
- PCP theorem shows hardness of approximating max3SAT to within any constant factor if P ≠ NP
- we showed hardness of approximation for Indset as well
- this is equivalent to having a probabilistically checkable proof system with logarithmic randomness and constant queries
- PCP proofs involve intricate encoding schemes like Walsh-Hadamard

Further Reading Luca Trevisan, Inapproximability of Combinatorial Optimization Problems, available from http://www.cs.berkeley.edu/~luca/pubs/inapprox.pdf Next and final topic: Parallelism