Complexity Theory

Jörg Kreiker

Chair for Theoretical Computer Science Prof. Esparza TU München

Summer term 2010

Lecture 20 Probabilistically checkable proofs

Goal and plan

Goal

- understand probabilistically checkable proofs,
- know some examples, and
- see the relation (in fact, equivalence) between PCP and hardness of approximation

Plan

- PCP for GNI
- definition: intuition and formalization
- PCP theorem and some obvious consequences
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

What does probabilistically checkable mean?

PCP: an intuition

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

PCP: an intuition

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

• typically membership in a language

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

• typically membership in a language

Why should I care?

What does probabilistically checkable mean?

 you want to verify correctness of a proof by only looking at a few bits of it

Which proofs?

• typically membership in a language

Why should I care?

because it gives you a tool to prove hardness of approximation

Intuition

How can it be done?

How can it be done?

Example

- Susan picks some $0 \le n \le 10$, Matt wants to know which *n*
- problem: his vision is blurred, he only sees up to ± 5

How can it be done?

Example

- Susan picks some $0 \le n \le 10$, Matt wants to know which *n*
- problem: his vision is blurred, he only sees up to ± 5

Solution

• Matt: Hey, Susan, why don't you show me 100 · n instead?

Can you say this more formally?

- blurred vision ~ we cannot see all bits of a proof
- \Rightarrow we can check only a few bits
 - proofs can be spread out such that wrong proofs are wrong everywhere
 - the definition of PCP will require existence of a proof only
 - a correct proof must always be accepted (completeness 1)
 - a wrong proof must be rejected with high probability (soundness ρ)

Does it work for real problems?

Does it work for real problems?

- yes, here is a PCP for graph non-isomorphism
- we use our familiar notion of verifier and prover
- albeit both face some limitations (later)

PCP for GNI

Input: graphs G_0 , G_1 with *n* nodes

Verifier

- picks *b* ∈ {0, 1} at random
- picks random permutation $\sigma: [n] \rightarrow [n]$
- asks for $b' = \pi(\sigma(G_b))$
- accepts iff b' = b

an array π indexed by all graphs with n nodes

Proof π

- π[H] contains a if
 H ≅ G_a
- otherwise 0 or 1

Analysis

- $|\pi|$ is exponential in *n*
- verifier asks for only one bit
- verifier needs O(n) random bits
- verifier is a polynomial time TM
- if π is correct, the verifier always accepts
- if π is wrong (e.g. because $G_0 \cong G_1$, then verifier accepts with probability 1/2

Agenda

- PCP for GNI \checkmark
- definition: intuition and formalization
- · PCP theorem and some obvious consequences
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

PCP system for $L \subseteq \{0, 1\}^*$

Input: word $x \in \{0, 1\}^n$

Verifier

Prover

- **1.** pick r(n) random bits
- 2. pick q(n) positions/bits in π
- 3. based on x and random bits, compute $\Phi : \{0, 1\}^{q(n)} \rightarrow \{0, 1\}$
- 4. after receiving proof bits $\pi_1, \ldots, \pi_{q(n)}$ output $\Phi(\pi_1, \ldots, \pi_{q(n)})$
- V is a polynomial-time TM
- if $x \in L$ then there exists a proof π s.t. V always accepts
- if $x \notin L$ then V accepts with probability $\leq 1/2$ for all proofs π

- creates a proof π that $x \in L$
- $|\pi| \in 2^{r(n)}q(n)$
- on request, sends bits of π

Definition

A language $L \in \{0, 1\}^*$ is in PCP[r(n), q(n)] iff there exists a PCP system with $c \cdot r(n)$ random bits and $d \cdot q(n)$ queries for constants c, d > 0.

Definition

A language $L \in \{0, 1\}^*$ is in PCP[r(n), q(n)] iff there exists a PCP system with $c \cdot r(n)$ random bits and $d \cdot q(n)$ queries for constants c, d > 0.

Theorem (THE PCP theorem) $PCP[\log n, 1] = NP.$

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- **PCP**[0, 0]

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- **PCP**[0, log(*n*)]

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- PCP[0, log(n)] = P
- **PCP**[0, *poly*(*n*)]

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- PCP[0, log(n)] = P
- **PCP**[0, *poly*(*n*)] = **NP**
- $PCP[r(n), q(n)] \subseteq NTIME(2^{O(r(n))}q(n))$

- GNI \in **PCP**[poly(n), 1]
- the soundness parameter is arbitrary and can be amplified by repetition
- PCP[0, 0] = P
- PCP[0, log(n)] = P
- **PCP**[0, *poly*(*n*)] = **NP**
- $PCP[r(n), q(n)] \subseteq NTIME(2^{O(r(n))}q(n))$
- \Rightarrow **PCP**[log *n*, 1] \subseteq **NP**
 - every problem in NP has a polynomial sized proof (certificate), of which we need to check only a constant number of bits
 - for 3SAT (and hence for all!) as low as 3!

More remarks

• the Cook-Levin reduction does not suffice to prove the PCP theorem

- because of soundness
- even for $x \notin L$, almost all clauses are satisfiable
- because they describe acceptable computations

More remarks

• the Cook-Levin reduction does not suffice to prove the PCP theorem

- because of soundness
- even for $x \notin L$, almost all clauses are satisfiable
- because they describe acceptable computations
- PCP is inherently different from IP
 - proofs can be exponential in PCP
 - PCP: restrictions on queries and random bits
 - IP: restrictions on total message length
 - \Rightarrow **PCP**[*poly*(*n*), *poly*(*n*)] \supseteq **IP** = **PSPACE** (in fact equal to **NEXP**)

Agenda

- PCP for GNI \checkmark
- definition: intuition and formalization \checkmark
- PCP theorem and some obvious consequences \checkmark
- tool: a more general 3SAT, constraint satisfaction CSP
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

Constraint satisfaction

3SAT	qCSP
 <i>n</i> Boolean variables <i>m</i> clauses each clause has 3 variables 	 <i>n</i> Boolean variables <i>m</i> general constraints each constraint is over <i>q</i> variables

CSP remarks

- one can define the fraction of simultaneously satisfiable clauses just as for max3SAT
- each constraint represents a function $\{0, 1\}^q \rightarrow \{0, 1\}$
- we may assume that all variables are used: $n \leq qm$
- ⇒ a qCSP instance can be represented using $mq \log(n)2^q$ bits (polynomial in n, m)

Definition

gap – qCSP[ρ , 1] is NP-hard if for every $L \in NP$ there is a gap-producing reduction *f* such that

- $x \in L \implies f(x)$ is satisfiable
- x ∉ L ⇒ at most ρ constraints of f(x) are satisfiable (at the same time)

Agenda

- PCP for GNI \checkmark
- definition: intuition and formalization \checkmark
- PCP theorem and some obvious consequences \checkmark
- tool: a more general 3SAT, constraint satisfaction CSP \checkmark
- PCP theorem \implies gapCSP[ρ , 1] is NP-hard
- gapCSP[ρ , 1] is NP-hard \implies PCP theorem

Hardness of app \Leftrightarrow PCP

Theorem

The following two statements are equivalent.

- **NP** = **PCP**[log *n*, 1]
- there exist $0 < \rho < 1$ and $q \in \mathbb{N}$ such that gap $-qCSP[\rho, 1]$ is NP-hard.

Hardness of app \Leftrightarrow PCP

Theorem

The following two statements are equivalent.

- **NP** = **PCP**[log *n*, 1]
- there exist 0 < ρ < 1 and q ∈ N such that gap qCSP[ρ, 1] is NP-hard.

- this formalizes the equivalence of probabilistically checkable proofs and hardness of approximation
- this is why the PCP theorem was a breakthrough in inapproximability
- gap preservation from CSP to 3SAT is not hard but omitted

 show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using d log m random bits

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using d log m random bits
- since $n \leq qm$, it uses $c \log n$ random bits

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using d log m random bits
- since $n \le qm$, it uses $c \log n$ random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi(b_1, \ldots, b_q) = 1$ if V accepts these bits from proof π

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using d log m random bits
- since $n \le qm$, it uses $c \log n$ random bits
- define $f(x) = \{\psi_r : \{0,1\}^q \to \{0,1\} \mid r \in \{0,1\}^{c \log n}\}$ such that
- $\psi(b_1, \ldots, b_q) = 1$ if V accepts these bits from proof π
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using d log m random bits
- since $n \le qm$, it uses $c \log n$ random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi(b_1, \ldots, b_q) = 1$ if V accepts these bits from proof π
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time
- if $x \in 3$ SAT then there exists proof π s.t. f(x) is satisfiable

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using d log m random bits
- since $n \le qm$, it uses $c \log n$ random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi(b_1, \ldots, b_q) = 1$ if V accepts these bits from proof π
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time
- if $x \in 3$ SAT then there exists proof π s.t. f(x) is satisfiable
- if $x \notin 3SAT$ then all proofs π satisfy at most 1/2 of f(x)'s constraints

- show that there is a gap-producing reduction *f* from 3SAT to gap – qCSP[1/2, 1]
- by PCP, 3SAT has PCP system with poly. time verifier V, a constant q queries, using d log m random bits
- since $n \le qm$, it uses $c \log n$ random bits
- define $f(x) = \{\psi_r : \{0, 1\}^q \to \{0, 1\} \mid r \in \{0, 1\}^{c \log n}\}$ such that
- $\psi(b_1, \ldots, b_q) = 1$ if V accepts these bits from proof π
- f(x) is a qCSP of size 2^{c log n} ∈ O(n), representable and computable in poly time
- if $x \in 3$ SAT then there exists proof π s.t. f(x) is satisfiable
- if $x \notin 3SAT$ then all proofs π satisfy at most 1/2 of f(x)'s constraints
- \Rightarrow f is gap-producing

• show that for $L \in NP$, there exists a PCP system

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable

⇐

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s *n* variables
 - picks $1 \le i \le m$ at random (needs log *m* bits!)
 - sets $\Phi = \psi_j$
 - asks for value of q variables of ψ_j

⇐

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s *n* variables
 - picks $1 \le i \le m$ at random (needs log *m* bits!)
 - sets $\Phi = \psi_j$
 - asks for value of q variables of ψ_j
- if $x \in L$ then V accepts with prob. 1
- if $x \notin L$ then V accepts with prob. ρ

⇐

- show that for $L \in NP$, there exists a PCP system
- by assumption there is a gap-producing reduction *f* from *L* to gap – qCSP[ρ, 1] for some *q* and ρ
 - for $x \in L$: f(x) is satisfiable qCSP $\{\psi_i\}_{i=1}^m$
 - for $x \notin L$ at most ρm constraints satisfiable
- on input x the PCP verifier
 - computes f(x)
 - expects proof π to be assignment to f(x)'s *n* variables
 - picks $1 \le i \le m$ at random (needs log *m* bits!)
 - sets $\Phi = \psi_j$
 - asks for value of q variables of ψ_j
- if $x \in L$ then V accepts with prob. 1
- if $x \notin L$ then V accepts with prob. ρ
- ρ can be amplified to soundness error at most 1/2 by constant number of repetitions

What have we learnt?

- probabilistically checkable proofs are proofs with restrictions on the verifier's number of random bits and the number of proof bits queried
- yields a new, robust characterization of NP
- is equivalent to NP-hardness of gap qCSP[ρ, 1]
- hence to NP-hardness of gap 3SAT[ρ, 1]
- hence to NP-hardness of approximation for many problems in NP (previous lecture)

```
Up next: Prove that NP \subseteq PCP[poly(n), 1]
```