
Complexity Theory

Jörg Kreiker

Chair for Theoretical Computer Science
Prof. Esparza

TU München

Summer term 2010

Lecture 20

Probabilistically checkable proofs

Intro

Goal and plan

Goal
• understand probabilistically checkable proofs,
• know some examples, and
• see the relation (in fact, equivalence) between PCP and hardness of

approximation

Plan
• PCP for GNI
• definition: intuition and formalization
• PCP theorem and some obvious consequences
• tool: a more general 3SAT, constraint satisfaction CSP
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem

Intuition

PCP: an intuition

What does probabilistically checkable mean?

• you want to verify correctness of a proof by only looking at a few bits
of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?

• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?

• because it gives you a tool to prove hardness of approximation

Intuition

PCP: an intuition

What does probabilistically checkable mean?
• you want to verify correctness of a proof by only looking at a few bits

of it

Which proofs?
• typically membership in a language

Why should I care?
• because it gives you a tool to prove hardness of approximation

Intuition

How can it be done?

Example
• Susan picks some 0 ≤ n ≤ 10, Matt wants to know which n
• problem: his vision is blurred, he only sees up to ±5

Solution
• Matt: Hey, Susan, why don’t you show me 100 · n instead?

Intuition

How can it be done?

Example
• Susan picks some 0 ≤ n ≤ 10, Matt wants to know which n
• problem: his vision is blurred, he only sees up to ±5

Solution
• Matt: Hey, Susan, why don’t you show me 100 · n instead?

Intuition

How can it be done?

Example
• Susan picks some 0 ≤ n ≤ 10, Matt wants to know which n
• problem: his vision is blurred, he only sees up to ±5

Solution
• Matt: Hey, Susan, why don’t you show me 100 · n instead?

Intuition

Can you say this more formally?

• blurred vision ∼ we cannot see all bits of a proof

⇒ we can check only a few bits
• proofs can be spread out such that wrong proofs are wrong

everywhere
• the definition of PCP will require existence of a proof only
• a correct proof must always be accepted (completeness 1)
• a wrong proof must be rejected with high probability (soundness ρ)

Intuition

Does it work for real problems?

• yes, here is a PCP for graph non-isomorphism
• we use our familiar notion of verifier and prover
• albeit both face some limitations (later)

Intuition

Does it work for real problems?

• yes, here is a PCP for graph non-isomorphism
• we use our familiar notion of verifier and prover
• albeit both face some limitations (later)

Intuition

PCP for GNI

Input: graphs G0,G1 with n nodes

Verifier Proof π

• picks b ∈ {0, 1} at
random

• picks random
permutation
σ : [n]→ [n]

• asks for b ′ = π(σ(Gb))

• accepts iff b ′ = b

• an array π indexed by all
graphs with n nodes

• π[H] contains a if
H � Ga

• otherwise 0 or 1

Intuition

Analysis

• |π| is exponential in n
• verifier asks for only one bit
• verifier needs O(n) random bits
• verifier is a polynomial time TM
• if π is correct, the verifier always accepts
• if π is wrong (e.g. because G0 � G1, then verifier accepts with

probability 1/2

Intuition

Agenda

• PCP for GNI X
• definition: intuition and formalization
• PCP theorem and some obvious consequences
• tool: a more general 3SAT, constraint satisfaction CSP
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem

PCP: def and theorem

PCP system for L ⊆ {0, 1}∗

Input: word x ∈ {0, 1}n

Verifier Prover

1. pick r(n) random bits

2. pick q(n) positions/bits
in π

3. based on x and random
bits, compute
Φ : {0, 1}q(n) → {0, 1}

4. after receiving proof bits
π1, . . . , πq(n) output
Φ(π1, . . . , πq(n))

• creates a proof π that
x ∈ L

• |π| ∈ 2r(n)q(n)

• on request, sends bits of
π

• V is a polynomial-time TM
• if x ∈ L then there exists a proof π s.t. V always accepts
• if x < L then V accepts with probability ≤ 1/2 for all proofs π

PCP: def and theorem

PCP[r(n), q(n)]

Definition
A language L ∈ {0, 1}∗ is in PCP[r(n), q(n)] iff there exists a PCP system
with c · r(n) random bits and d · q(n) queries for constants c, d > 0.

Theorem (THE PCP theorem)

PCP[log n, 1] = NP.

PCP: def and theorem

PCP[r(n), q(n)]

Definition
A language L ∈ {0, 1}∗ is in PCP[r(n), q(n)] iff there exists a PCP system
with c · r(n) random bits and d · q(n) queries for constants c, d > 0.

Theorem (THE PCP theorem)

PCP[log n, 1] = NP.

PCP: def and theorem

Observations

• GNI ∈ PCP[poly(n), 1]

• the soundness parameter is arbitrary and can be amplified by
repetition

• PCP[0, 0]

= P
• PCP[0, log(n)] = P
• PCP[0, poly(n)] = NP
• PCP[r(n), q(n)] ⊆ NTIME(2O(r(n))q(n))

⇒ PCP[log n, 1] ⊆ NP
• every problem in NP has a polynomial sized proof (certificate), of

which we need to check only a constant number of bits
• for 3SAT (and hence for all!) as low as 3!

PCP: def and theorem

Observations

• GNI ∈ PCP[poly(n), 1]

• the soundness parameter is arbitrary and can be amplified by
repetition

• PCP[0, 0] = P
• PCP[0, log(n)]

= P
• PCP[0, poly(n)] = NP
• PCP[r(n), q(n)] ⊆ NTIME(2O(r(n))q(n))

⇒ PCP[log n, 1] ⊆ NP
• every problem in NP has a polynomial sized proof (certificate), of

which we need to check only a constant number of bits
• for 3SAT (and hence for all!) as low as 3!

PCP: def and theorem

Observations

• GNI ∈ PCP[poly(n), 1]

• the soundness parameter is arbitrary and can be amplified by
repetition

• PCP[0, 0] = P
• PCP[0, log(n)] = P
• PCP[0, poly(n)]

= NP
• PCP[r(n), q(n)] ⊆ NTIME(2O(r(n))q(n))

⇒ PCP[log n, 1] ⊆ NP
• every problem in NP has a polynomial sized proof (certificate), of

which we need to check only a constant number of bits
• for 3SAT (and hence for all!) as low as 3!

PCP: def and theorem

Observations

• GNI ∈ PCP[poly(n), 1]

• the soundness parameter is arbitrary and can be amplified by
repetition

• PCP[0, 0] = P
• PCP[0, log(n)] = P
• PCP[0, poly(n)] = NP
• PCP[r(n), q(n)] ⊆ NTIME(2O(r(n))q(n))

⇒ PCP[log n, 1] ⊆ NP
• every problem in NP has a polynomial sized proof (certificate), of

which we need to check only a constant number of bits
• for 3SAT (and hence for all!) as low as 3!

PCP: def and theorem

Observations

• GNI ∈ PCP[poly(n), 1]

• the soundness parameter is arbitrary and can be amplified by
repetition

• PCP[0, 0] = P
• PCP[0, log(n)] = P
• PCP[0, poly(n)] = NP
• PCP[r(n), q(n)] ⊆ NTIME(2O(r(n))q(n))

⇒ PCP[log n, 1] ⊆ NP
• every problem in NP has a polynomial sized proof (certificate), of

which we need to check only a constant number of bits
• for 3SAT (and hence for all!) as low as 3!

PCP: def and theorem

More remarks

• the Cook-Levin reduction does not suffice to prove the PCP theorem
• because of soundness
• even for x < L , almost all clauses are satisfiable
• because they describe acceptable computations

• PCP is inherently different from IP
• proofs can be exponential in PCP
• PCP: restrictions on queries and random bits
• IP: restrictions on total message length
⇒ PCP[poly(n), poly(n)] ⊇ IP = PSPACE (in fact equal to NEXP)

PCP: def and theorem

More remarks

• the Cook-Levin reduction does not suffice to prove the PCP theorem
• because of soundness
• even for x < L , almost all clauses are satisfiable
• because they describe acceptable computations

• PCP is inherently different from IP
• proofs can be exponential in PCP
• PCP: restrictions on queries and random bits
• IP: restrictions on total message length
⇒ PCP[poly(n), poly(n)] ⊇ IP = PSPACE (in fact equal to NEXP)

PCP: def and theorem

Agenda

• PCP for GNI X
• definition: intuition and formalization X
• PCP theorem and some obvious consequences X
• tool: a more general 3SAT, constraint satisfaction CSP
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem

Constraint satisfaction

Constraint satisfaction

3SAT qCSP

• n Boolean variables
• m clauses
• each clause has 3

variables

• n Boolean variables
• m general constraints
• each constraint is over q

variables

Constraint satisfaction

CSP remarks

• one can define the fraction of simultaneously satisfiable clauses just
as for max3SAT

• each constraint represents a function {0, 1}q → {0, 1}
• we may assume that all variables are used: n ≤ qm

⇒ a qCSP instance can be represented using mq log(n)2q bits
(polynomial in n,m)

Constraint satisfaction

gap-CSP

Definition
gap − qCSP[ρ, 1] is NP-hard if for every L ∈ NP there is a gap-producing
reduction f such that
• x ∈ L =⇒ f(x) is satisfiable
• x < L =⇒ at most ρ constraints of f(x) are satisfiable (at the same

time)

Constraint satisfaction

Agenda

• PCP for GNI X
• definition: intuition and formalization X
• PCP theorem and some obvious consequences X
• tool: a more general 3SAT, constraint satisfaction CSP X
• PCP theorem =⇒ gapCSP[ρ, 1] is NP-hard
• gapCSP[ρ, 1] is NP-hard =⇒ PCP theorem

PCP vs hardness of approximation

Hardness of app⇔ PCP

Theorem
The following two statements are equivalent.
• NP = PCP[log n, 1]

• there exist 0 < ρ < 1 and q ∈ N such that gap − qCSP[ρ, 1] is
NP-hard.

• this formalizes the equivalence of probabilistically checkable proofs
and hardness of approximation

• this is why the PCP theorem was a breakthrough in inapproximability
• gap preservation from CSP to 3SAT is not hard but omitted

PCP vs hardness of approximation

Hardness of app⇔ PCP

Theorem
The following two statements are equivalent.
• NP = PCP[log n, 1]

• there exist 0 < ρ < 1 and q ∈ N such that gap − qCSP[ρ, 1] is
NP-hard.

• this formalizes the equivalence of probabilistically checkable proofs
and hardness of approximation

• this is why the PCP theorem was a breakthrough in inapproximability
• gap preservation from CSP to 3SAT is not hard but omitted

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits
• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time
• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits
• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time
• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits

• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time
• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits
• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π

• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable
in poly time

• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits
• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time

• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits
• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time
• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable

• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits
• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time
• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇒

• show that there is a gap-producing reduction f from 3SAT to
gap − qCSP[1/2, 1]

• by PCP, 3SAT has PCP system with poly. time verifier V , a constant q
queries, using d log m random bits

• since n ≤ qm, it uses c log n random bits
• define f(x) = {ψr : {0, 1}q → {0, 1} | r ∈ {0, 1}c log n} such that
• ψ(b1, . . . , bq) = 1 if V accepts these bits from proof π
• f(x) is a qCSP of size 2c log n ∈ O(n), representable and computable

in poly time
• if x ∈ 3SAT then there exists proof π s.t. f(x) is satisfiable
• if x < 3SAT then all proofs π satisfy at most 1/2 of f(x)’s constraints

⇒ f is gap-producing

PCP vs hardness of approximation

⇐

• show that for L ∈ NP, there exists a PCP system

• by assumption there is a gap-producing reduction f from L to
gap − qCSP[ρ, 1] for some q and ρ
• for x ∈ L : f(x) is satisfiable qCSP {ψi}

m
i=1

• for x < L at most ρm constraints satisfiable

• on input x the PCP verifier
• computes f(x)
• expects proof π to be assignment to f(x)’s n variables
• picks 1 ≤ i ≤ m at random (needs log m bits!)
• sets Φ = ψj

• asks for value of q variables of ψj

• if x ∈ L then V accepts with prob. 1
• if x < L then V accepts with prob. ρ
• ρ can be amplified to soundness error at most 1/2 by constant

number of repetitions

PCP vs hardness of approximation

⇐

• show that for L ∈ NP, there exists a PCP system
• by assumption there is a gap-producing reduction f from L to

gap − qCSP[ρ, 1] for some q and ρ

• for x ∈ L : f(x) is satisfiable qCSP {ψi}
m
i=1

• for x < L at most ρm constraints satisfiable

• on input x the PCP verifier
• computes f(x)
• expects proof π to be assignment to f(x)’s n variables
• picks 1 ≤ i ≤ m at random (needs log m bits!)
• sets Φ = ψj

• asks for value of q variables of ψj

• if x ∈ L then V accepts with prob. 1
• if x < L then V accepts with prob. ρ
• ρ can be amplified to soundness error at most 1/2 by constant

number of repetitions

PCP vs hardness of approximation

⇐

• show that for L ∈ NP, there exists a PCP system
• by assumption there is a gap-producing reduction f from L to

gap − qCSP[ρ, 1] for some q and ρ
• for x ∈ L : f(x) is satisfiable qCSP {ψi}

m
i=1

• for x < L at most ρm constraints satisfiable

• on input x the PCP verifier
• computes f(x)
• expects proof π to be assignment to f(x)’s n variables
• picks 1 ≤ i ≤ m at random (needs log m bits!)
• sets Φ = ψj

• asks for value of q variables of ψj

• if x ∈ L then V accepts with prob. 1
• if x < L then V accepts with prob. ρ
• ρ can be amplified to soundness error at most 1/2 by constant

number of repetitions

PCP vs hardness of approximation

⇐

• show that for L ∈ NP, there exists a PCP system
• by assumption there is a gap-producing reduction f from L to

gap − qCSP[ρ, 1] for some q and ρ
• for x ∈ L : f(x) is satisfiable qCSP {ψi}

m
i=1

• for x < L at most ρm constraints satisfiable

• on input x the PCP verifier
• computes f(x)
• expects proof π to be assignment to f(x)’s n variables
• picks 1 ≤ i ≤ m at random (needs log m bits!)
• sets Φ = ψj

• asks for value of q variables of ψj

• if x ∈ L then V accepts with prob. 1
• if x < L then V accepts with prob. ρ
• ρ can be amplified to soundness error at most 1/2 by constant

number of repetitions

PCP vs hardness of approximation

⇐

• show that for L ∈ NP, there exists a PCP system
• by assumption there is a gap-producing reduction f from L to

gap − qCSP[ρ, 1] for some q and ρ
• for x ∈ L : f(x) is satisfiable qCSP {ψi}

m
i=1

• for x < L at most ρm constraints satisfiable

• on input x the PCP verifier
• computes f(x)
• expects proof π to be assignment to f(x)’s n variables
• picks 1 ≤ i ≤ m at random (needs log m bits!)
• sets Φ = ψj

• asks for value of q variables of ψj

• if x ∈ L then V accepts with prob. 1
• if x < L then V accepts with prob. ρ

• ρ can be amplified to soundness error at most 1/2 by constant
number of repetitions

PCP vs hardness of approximation

⇐

• show that for L ∈ NP, there exists a PCP system
• by assumption there is a gap-producing reduction f from L to

gap − qCSP[ρ, 1] for some q and ρ
• for x ∈ L : f(x) is satisfiable qCSP {ψi}

m
i=1

• for x < L at most ρm constraints satisfiable

• on input x the PCP verifier
• computes f(x)
• expects proof π to be assignment to f(x)’s n variables
• picks 1 ≤ i ≤ m at random (needs log m bits!)
• sets Φ = ψj

• asks for value of q variables of ψj

• if x ∈ L then V accepts with prob. 1
• if x < L then V accepts with prob. ρ
• ρ can be amplified to soundness error at most 1/2 by constant

number of repetitions

PCP vs hardness of approximation

What have we learnt?

• probabilistically checkable proofs are proofs with restrictions on the
verifier’s number of random bits and the number of proof bits queried

• yields a new, robust characterization of NP
• is equivalent to NP-hardness of gap − qCSP[ρ, 1]

• hence to NP-hardness of gap − 3SAT[ρ, 1]

• hence to NP-hardness of approximation for many problems in NP
(previous lecture)

Up next: Prove that NP ⊆ PCP[poly(n), 1]

	Intro
	Intuition
	PCP: def and theorem
	Constraint satisfaction
	PCP vs hardness of approximation

