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Lecture 2

Turing Machines

2



Agenda

Formalize a model of computation!

• k -tape Turing machines

• robustness

• universal Turing machine

• computability, halting problem

• P
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Which models of computation do you know?

• programming languages

• hardware

• biological/chemical systems

• primitive/µ-recursive functions/λ-calculus

• logic

• automata

• quantum computers

• paper and pencil

Turing machines!

Church-Turing Thesis: all models equally expressive
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TMs – illustrated
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k -tape Turing machines

• k scratchpad tapes, infinitely long, contain cells
• one input tape, read-only
• one output tape
• working tapes
• k heads positioned on individual cells for reading and writing

• finite control (finite set of rules)

• vocabulary, alphabet to write in cells
• actions: depending on

• symbols under heads
• control state

one can
• move heads (right, left, stay)
• write symbols into current cells
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TMs – reading palindromes

TM for function pal : {0, 1}∗ → {0, 1} which outputs 1 for
palindromes.

• copy input to work tape

• move input head to front, work tape head to end
• in each step

• compare input and work tape
• move input head right
• move work head left

• if whole input processed, output 1
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TMs – formally

Definition (k -tape Turing machine (syntax))

Turing machine is a triple (Γ,Q , δ) where

• Γ is a finite alphabet (tape symbols) comprising 0, 1, � (empty
cell), and B (start symbol)

• Q is finite set of states (control) containing qstart and qhalt

• δ : Q × Γk → Q × Γk−1 × {l, s, r}k , transition function such that
δ(qhalt , ~σ) = (qhalt , ~σ2, ~s).
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TMs – formally

Definition (Computing a function and running time)

Let M be a k -tape TM and x ∈ (Γ \ {�,B})∗ an input. Let T : N→ N
and f : {0, 1}∗ → {0, 1}∗ be functions.

1. the start configuration of M on input x is Bx�ω on the input
tape and B�ω on the k − 1 other tapes; all heads are on B; and
M is in state qstart

2. if M is in state q and (σ1, . . . , σk ) are symbols being read, and
δ(q, (σ1, . . . , σk )) = (q′, (σ′2, . . . , σ

′
k ), ~z), then at the next step

M is in state q′, σi has been replaced by σ′i for i = 2..k and the
heads have moved left, stayed, or r ight according to ~z

3. M has halted if it gets to state qhalt

4. M computes f in time T if it halts on input x with f(x) on its
output tape and every x ∈ {0, 1}∗ requires at most T(|x |) steps.
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Remarks on TM definition

• TMs are deterministic

• going left from B means staying
• item 4: consider time-constructible functions T only

• T(n) ≥ n and
• exists TM M computing T in time T

• TM define total functions
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Agenda

• k -tape Turing machines X

• robustness

• universal Turing machine

• computability, halting problem

• P
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Robustness

Definition of TM is robust, most choices do not change complexity
classes.

• alphabet size (two is enough)

• number of tapes (one is enough)

• tape dimensions (one-directional tapes, bi-directional tapes,
two-dimensional tapes)

• random access TMs
• oblivious TMs

• see exercises
• head positions at i-th step of execution on input x depend only

on |x | and i

All variations can simulate each other with at most polynomial
overhead in running time.

12



Agenda

• k -tape Turing machines X

• robustness X

• universal Turing machine

• computability, halting problem

• P
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Universal TM

• TMs can be represented as strings (over {0, 1}) by encoding
their transition function (can you?)
• write Mα for TM represented by string α
• every string α represents some TM
• every TM has infinitely many representations

• if TM M computes f , universal TM U takes representation α of
TM M and input x and computes f(x)

• like general purpose computer loaded with software

• like interpreter for a language written in same language

• U has bounded alphabet, rules, tapes; simulates much larger
machines efficiently
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Efficient simulation

Theorem (Universal TM)

There exists a TM U such that for every x, α ∈ {0, 1}∗,
U(x, α) = Mα(x). If Mα holds on x within T steps, then U(x, α)
holds within O(T log T) steps.
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Agenda

• k -tape Turing machines X

• robustness X

• universal Turing machine X

• computability, halting problem

• P
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Deciding languages

• often one is interested in functions f : {0, 1}∗ → {0, 1}

• f can be identified with the language
Lf = {x ∈ {0, 1}∗ | f(x) = 1}

• TM that computes f is said to decide Lf (and vice versa)
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Halting Problem

There are languages that cannot be decided by any TM regardless
time and space.

Example

The halting problem is the set of pairs of TM representations and
inputs, such that the TMs eventually halt on the given input.

Halt = {〈α, x〉 | Mα halts on x}

Theorem
Halt is not decidable by any TM.

Proof: diagonalization and reduction
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DTIME

Definition (DTIME)

Let T : N→ N be a function. L ⊆ {0, 1}∗ is in DTIME(T) if there
exists a TM deciding L in time T ′ for T ′ ∈ O(T).

• D refers to deterministic

• constants are ignored since TM can be sped up by arbitrary
constants
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P

Definition (P)

P =
⋃
c≥1

DTIME(np)

• P captures tractable computations

• low-level choices of TM definitions are immaterial to P
• Connectivity,Primes ∈ P
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What have we learnt?

• many equivalent ways to capture essence of computations
(Church-Turing)

• k -tape TMs

• TM can be represented as strings; universal TM can simulate
any TM given its representations with polynomial overhead only

• uncomputable functions do exist (halting problem):
diagonalization and reductions

• P robust wrt. tweaks in TM definition (universal simulation)

• P captures tractable computations, solvable by TMs in
polynomial time

• diagonalization, reduction

• up next: NP
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