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Lecture 14

Interactive Proofs
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Intro

Overview

NP certificates or proof of membership
↓

RP proofs chosen at random
↓

IP interactive proofs
between a prover and a verifier

Example: job interview, interactive vs. fixed questions
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Intro

Agenda

• interactive proof examples
• socks
• graph coloring
• graph non-isomorphism

• definition of interactive proof complexity
• IP
• public coins: AM
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Examples Socks

Different socks

Example

P wants to convince V that she has a red sock and a yellow sock. V
is blind and has a coin.
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Examples Socks

Interactive Proof

1. P tells V which sock is red

2. V holds red sock in her right hand, left sock in her yellow hand

3. P turns away from V
4. V tosses a coin

4.1 heads: keep socks
4.2 tails: switch socks

5. V asks P where the red sock is
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Examples Socks

Observations

• If P tells the truth (different colors), she will always answer
correctly

• If P lies
• she can only answer correctly with probability 1/2
• after k rounds, she gets caught lying with probability 1 − 2−k

• random choices are crucial

• P has more computational power (vision) than V

• P must not see V’s coin (private coin)
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Examples Coloring

Graph 3-Coloring

• P claims: G is 3-colorable
• How can she prove it to V?
• provide certificate (since 3−Col ∈ NP), V checks it
• possible for all L ∈ NP with one round if P has NP power
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Examples Coloring

What if actual coloring should be secret?

• given a graph (V ,E) with |V | = n

• P claims 3-colorability

• P wants to convince V of coloring c : V → C (= {R ,G,B})

1. P randomly picks a permutation π : C → C and puts π(c(vi)) in
envelope i for each 1 ≤ i ≤ n

2. V randomly picks edge (ui , uj) and opens envelopes i and j to
find colors ci and cj

3. V accepts iff ci , cj
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Examples Coloring

Observations

• the protocol has two rounds

• a round is an uninterrupted sequence of messages from one
party

• if G is not 3-colorable, P will be caught lying after O(n3) rounds
with probability 1 − 2−n

• V learns nothing about the actual coloring

⇒ zero-knowledge protocol

• by reductions, all NP languages have ZK protocols

• private coins

10



Examples Graph Non-Isomorphism

Graph Non-Isomorphism

• NP languages have succinct, deterministic proofs

• coNP languages possibly don’t

• graph isomorphism, GI, is in NP
• hence GNI = {〈G1,G2〉 | G1 � G2} is in coNP
• GNI has a succinct interactive proof
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Examples Graph Non-Isomorphism

Interactive Proof for GNI

given: graphs G1,G2

V pick i ∈R {1, 2}, random permutation π

V use π to permute nodes of Gi to obtain graph H

V send H to V

P check which of G1,G2 was used to obtain H

P let Gj be that graph and send j to V

V accept iff i = j
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Examples Graph Non-Isomorphism

Intuition

• same idea as for socks protocol

• P has unlimited computational power

• if G1 � G2 then P answers correctly with probability at most 1/2

• probability can be improved by sequential or parallel repetition

• if G1 � G2 then P answers correctly with probability 1

• privacy of coins crucial
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Examples Graph Non-Isomorphism

Agenda

• interactive proof examples X
• socks X
• graph coloring X
• graph non-isomorphism X

• definition of interactive proof complexity
• IP
• public coins: AM
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Definitions

Interaction

Definition (Interaction)

Let f , g : {0, 1}∗ → {0, 1}∗ be functions and k ≥ 0 an integer that may
depend on the input size. A k -round interaction of f and g on input
x ∈ {0, 1}∗ is the sequence 〈f , g〉(x) of strings a1, . . . , ak ∈ {0, 1}∗

defined by

a1 = f(x)
a2 = g(x, a1)
. . .

a2i+1 = f(x, a1, . . . , a2i) for 2i < k
a2i+2 = g(x, a1, . . . , a2i+1) for 2i + 1 < k

The output of f at the end of the interaction is defined by
outf 〈f , g〉(x) = f(x, a1, . . . , ak ) and assumed to be in {0, 1}.

This is a deterministic interaction, we need to add randomness.
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Definitions

Adding Randomness

Definition (IP)

For an integer k ≥ 1 that may depend on the input size, a language
L is in IP[k ], if there is a probabilistic polynomial-time TM V that can
have a k -round interaction with a function P : {0, 1}∗ → {0, 1}∗ such
that

• Completeness
x ∈ L =⇒ ∃P.Pr[outV 〈V ,P〉(x) = 1] ≥ 2/3

• Soundness
x < L =⇒ ∀P.Pr[outV 〈V ,P〉(x) = 1] ≤ 1/3

We define IP =
⋃

c≥1 IP[nc ].

• V has access to a random variable r ∈R {0, 1}m

• e.g. a1 = f(x, r) and a3 = f(x, a1, r)
• g cannot see r
⇒ outV 〈V ,P〉(x) is a random variable where all probabilities are

over the choice of r
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Definitions

Arthur-Merlin Protocols

Definition (AM)

• For every k the complexity class AM[k ] is defined as the
subset of IP[k ] obtained when the verfier’s messages are
random bits only and also the only random bits used by V.

• AM = AM[2]

Such an interactive proof is called an Arthur-Merlin proof or a public
coin proof.
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Definitions

Agenda

• interactive proof examples X
• socks X
• graph coloring X
• graph non-isomorphism X

• definition of interactive proof complexity
• IP X
• public coins: AM X
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Basic Properties

Basic Properties

• NP ⊆ IP
• for every polynomial p(n) the acceptance bounds in the

definition of IP can be changes to
• 2−p(n)for soundness
• 1 − 2−p(n) for completeness

• the requirement for completeness can be changed to require
probability 1 yielding perfect completeness

• perfect soundness collapses IP to NP
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Conclusion

What have we learnt?

• IP[k ]: languages that have k -round interactive proofs
• interaction and randomization possibly add power

• randomization alone: BPP (possibly equals P)
• deterministic interaction: NP
⇒ interactive proofs more succinct

• prover has unlimited computational power

• verifier is a BPP machine (poly-time with coins)

• coins can be private or public

• zero-knowledge protocols do exist for all NP languages

• soundness and completeness thresholds can be adapted
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Conclusion

What’s next?

• AM[2] = AM[k ] AM hierarchy collapses

• AM[k + 2] = IP[k ] private coins don’t help

• if graph isomorphism is NP-complete, the polynomial hierarchy
collapses

• IP = PSPACE
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