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Lecture 14

Interactive Proofs



Intro

Overview

NP certificates or proof of membership
RP proofs chosen at random

IP  interactive proofs
between a prover and a verifier

Example: job interview, interactive vs. fixed questions



Intro

Agenda

e interactive proof examples
e socks
e graph coloring
e graph non-isomorphism
e definition of interactive proof complexity
o |IP
e public coins: AM



Examples Socks

Different socks

Example

P wants to convince V that she has a red sock and a yellow sock. V
is blind and has a coin.



Examples Socks

Interactive Proof

P tells V which sock is red
V holds red sock in her right hand, left sock in her yellow hand
P turns away from V

V tosses a coin

4.1 heads: keep socks
4.2 tails: switch socks

Lol o

5. V asks P where the red sock is



Examples Socks

Observations

If P tells the truth (different colors), she will always answer
correctly
If P lies

e she can only answer correctly with probability 1/2
« after k rounds, she gets caught lying with probability 1 — 27

random choices are crucial

P has more computational power (vision) than V

P must not see V’s coin (private coin)



Examples Coloring

Graph 3-Coloring

P claims: G is 3-colorable

How can she prove it to V?

provide certificate (since 3—Col € NP), V checks it
possible for all L € NP with one round if P has NP power



Examples Coloring

What if actual coloring should be secret?

e given a graph (V,E) with [V|=n
e P claims 3-colorability
e P wants to convince V of coloringc: V- C (={R,G,B})

1. P randomly picks a permutation 7 : C — C and puts z(c(v;)) in
envelope iforeach1 <i<n

2. V randomly picks edge (uj, u;) and opens envelopes i and j to
find colors ¢; and ¢;

3. V accepts iff ¢; # ¢



Examples Coloring

Observations

the protocol has two rounds

a round is an uninterrupted sequence of messages from one
party

if G is not 3-colorable, P will be caught lying after O(n®) rounds
with probability 1 — 27"

¢ V learns nothing about the actual coloring

= zero-knowledge protocol
e by reductions, all NP languages have ZK protocols
e private coins
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Examples Graph Non-lsomorphism

Graph Non-Isomorphism

NP languages have succinct, deterministic proofs
coNP languages possibly don’t

graph isomorphism, Gl, is in NP

hence GNI = {{Gy, G2) | Gy £ Go} isin coNP
GNI has a succinct interactive proof



Examples Graph Non-lsomorphism

Interactive Proof for GNI

given: graphs Gy, Go
V pick i eg {1,2}, random permutation x
V use & to permute nodes of G; to obtain graph H
V send Hto V
P check which of Gy, G> was used to obtain H
P let G; be that graph and send j to V
V acceptiffi =
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Examples Graph Non-lsomorphism

Intuition

same idea as for socks protocol

P has unlimited computational power

if G1 = G then P answers correctly with probability at most 1/2

probability can be improved by sequential or parallel repetition
if G1 # Go then P answers correctly with probability 1
privacy of coins crucial
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Examples Graph Non-lsomorphism

Agenda

e interactive proof examples v/
e socks v/
e graph coloring v/
e graph non-isomorphism v/
e definition of interactive proof complexity
o |IP
e public coins: AM



Definitions

Interaction

Definition (Interaction)

Let f,g: {0,1}* — {0, 1}* be functions and k > 0 an integer that may
depend on the input size. A k-round interaction of f and g on input

x € {0, 1}" is the sequence (f, g)(x) of strings ay,...,ax € {0,1}*
defined by
a = f(X)
d = (x,ay)
a1 = f(x,at,...,az) for 2i < k
it = (X, a1,...,ag,-+1) for2i +1 < k

The output of f at the end of the interaction is defined by
outi(f, g)(x) = f(x, a1, ..., ax) and assumed to be in {0, 1}.

This is a deterministic interaction, we need to add randomness.
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Definitions

Adding Randomness

Definition (IP)
For an integer k > 1 that may depend on the input size, a language
L is in IP[k], if there is a probabilistic polynomial-time TM V that can
have a k-round interaction with a function P : {0,1}* — {0, 1}* such
that
e Completeness
x € L = AP.Prlouty(V,P)(x) = 1] >2/3
e Soundness
x¢L = VYP.Prlouty(V,P)(x) =1]<1/3

We define IP = (g1 IP[n°].

e V has access to a random variable r €g {0, 1}™
e eg. a; = f(x,r) and az = f(x, a1, r)
e g cannot see r
= outv(V. P} x) is a random variable where all probabilities are
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Definitions

Arthur-Merlin Protocols

Definition (AM)

 For every k the complexity class AN [k] is defined as the
subset of IP[k] obtained when the verfier's messages are
random bits only and also the only random bits used by V.
o AM = AM[2]

Such an interactive proof is called an Arthur-Merlin proof or a public
coin proof.



Definitions

Agenda

e interactive proof examples v/
e socks v/
e graph coloring v/
e graph non-isomorphism v/
e definition of interactive proof complexity
o IPV
e public coins: AM v
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Basic Properties

Basic Properties

NP CIP
for every polynomial p(n) the acceptance bounds in the
definition of IP can be changes to

o 27P(Nfor soundness

e 1 —27P(" for completeness
the requirement for completeness can be changed to require
probability 1 yielding perfect completeness

perfect soundness collapses IP to NP
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Conclusion

What have we learnt?

IP[k]: languages that have k-round interactive proofs
interaction and randomization possibly add power

e randomization alone: BPP (possibly equals P)
e deterministic interaction: NP
= interactive proofs more succinct

prover has unlimited computational power

verifier is a BPP machine (poly-time with coins)

coins can be private or public

zero-knowledge protocols do exist for all NP languages
soundness and completeness thresholds can be adapted
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Conclusion

What’s next?

AM[2] = AM[K] AM hierarchy collapses
AM[k + 2] = IP[K]
if graph isomorphism is NP-complete, the polynomial hierarchy
collapses

IP = PSPACE

private coins don'’t help
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