Complexity Theory

Jörg Kreiker

Chair for Theoretical Computer Science Prof. Esparza TU München

Summer term 2010

.

Lower Bounds for SAT

Lecture 11

Agenda

- big picture
- TISP
- lower bound for satisfiability
- big picture

What is complexity all about?

- formalize the notion of computation
- ressource consumption of computations
- depending on input size
- in the worst-case
- computing precise solutions

complexity classes separation lower bounds

Satisfiability

We cannot rule out that SAT could be solved in

- linear time or
- logarithmic space

Situation similar for many NP-complete problems.

What about restricting time and space simultaneously?

TISP

Definition (TISP)

Let $S, T : \mathbb{N} \to \mathbb{N}$ be constructible functions. A language $L \subseteq \{0, 1\}^*$ is in the complexity class $\mathsf{TISP}(T(n), S(n))$ if there exists a TM M deciding L in time T(n) and space S(n).

Note: $TISP(T(n), S(n)) \neq DTIME(T(n)) \cap SPACE(S(n))$

Agenda

- big picture √
- TISP ✓
- lower bound for satisfiability
- big picture

Lower Bound for Satisfiability

Theorem

SAT \notin **TISP** $(n^{1.1}, n^{0.1})$.

In order to decide SAT we need

- either more than linear time
- or more than logarithmic space
- due to completeness this translates to any other problem in NP
- stronger results known (see further reading)

Proof – Big Picture

Proof is by contradiction. So assume

- **0.** SAT \in **TISP** $(n^{1.1}, n^{0.1})$
- 1. This implies NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$)
- **2.** This implies $NTIME(n^{10}) \subseteq TISP(n^{12}, n^{02})$ by padding
- **3.** 1. also implies $NTIME(n) \subseteq DTIME(n^{1.2})$
- **4.** which implies $\Sigma_2 \text{TIME}(n^8) \subseteq \text{NTIME}(n^{9.6})$
- **5.** separately we can show TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8)
- **6.** (2,4,5) together establish $NTIME(n^{10}) \subseteq NTIME(n^{9.6})$ contradicting the non-deterministic time hierarchy theorem

g

Proof - Part 1

- can be proven by careful observation of the Cook-Levin reduction.
- problem decided in NTIME(T(n)) can be formulated as satisfiability problem of size T(n) log(T(n))
- every output bit of reduction computable in polylogarithmic time and space
- hence if SAT \in TISP $(n^{1.1}, n^{0.1})$ then NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$

Proof – Part 2 (padding)

- let $L \in \mathsf{NTIME}(n^{10})$
- define $L' = \{x1^{|x|^{10}} \mid x \in L\}$
- then $L' \in NTIME(n)$
- by part 1 of proof: $L' \in TISP(n^{1.2}, n^{0.2})$
- thus $L \in TISP(n^{12}, n^2)$

Proof – Part 3

By definition of **TISP**.

Proof – Part 4

Definition

A language L is in $\Sigma_2 \text{TIME}(n^8)$ iff there exists a TM M running in time $O(n^8)$ and constants c, d such that

$$x \in L \text{ iff } \exists u \in \{0,1\}^{c|x|^8}. \ \forall v \in \{0,1\}^{d|x|^8}. \ M(x,u,v) = 1$$

- let $L \in \Sigma_2 \text{TIME}(n^8)$
- define $L' = \{(x, u) \mid \forall v \in \{0, 1\}^{d|x|^8}. M(x, u, v) = 1\}$
- hence $\overline{L'} \in NTIME(n^8)$
- by premise we obtain $\overline{L'} \in \mathsf{DTIME}(n^{1.2*8})$ and also L'
- since $L = \{\exists u \in \{0, 1\}^{c|x|^8} \mid (x, u) \in L'\}$ we obtain $L \in \mathsf{NTIME}(n^{9.6})$

Proof – Part 5

- let $L \in TISP(n^{12}, n^2)$
- then there exists a TM M such that $x \in \{0, 1\}^n$ is accepted iff there is a path of length n^{12} in the configuration graph from C_{start} to C_{accept}
- where each configuration takes space $O(n^2)$
- this is the case iff
 - there exist configurations C_0, \ldots, C_{n^6} such that
 - $C_0 = C_{start}$, $C_{n^6} = C_{accept}$
 - for all $1 \le i \le n^6$ C_{i+1} is reachable from C_i in n^6 steps
- this implies L ∈ Σ₂TIME(n⁸)
- which can be equivalently characterized using alternating TMs

Agenda

- big picture √
- TISP ✓
- lower bound for satisfiability √
- big picture

Summary of today's result

- SAT cannot be decided in linear time and, simultaneously, logarithmic space
- neither can any other problem in NP
- lower bounds are hard
- nice combination of proof techniques
 - padding
 - reductions
 - splitting paths in the configuration graph

Further Reading

- AB, Theorem 5.11
- original lower bound by Fortnow, Time-space tradeoffs for satisfiability, CCC 1997.
- current record: SAT \notin TISP $(n^c, c^{O(1)})$ for any $c < 2\cos(\pi/7)$
- by R. Williams Time-space tradeoffs for counting NP solutions modulo integers, CCC 2007.

Big Picture so far