Complexity Theory

Jörg Kreiker
Chair for Theoretical Computer Science
Prof. Esparza
TU München

Summer term 2010

Lecture 10

The polynomial hierarchy PH

Agenda

- ExactIndset, MinEqDNF, and bounded QBF
- $\Sigma_{i}^{p}, \Pi_{i}^{p}$, and PH
- properties of the polynomial hierarchy
- more examples

Exact independent set

Recall the independent set problem

$$
\text { Indset }=\{\langle G, k\rangle \mid G \text { has an independent set of size } k\}
$$

which was shown to be NP-complete.
What about the variation
ExactIndset $=\{\langle G, k\rangle \mid$ the largest independent set of G has size $k\}$

One needs to show

1. there exists an independent set of size k and
2. all other independent set have size at most k
(1) is a \exists certificate (as in NP) while (2) is a \forall certificate (as in coNP)!

Minimizing Boolean formulas

Let DNF be disjunctive normal form and \equiv denote logic equivalence.
MinEqDNF $=\{\langle\varphi, k\rangle \mid$ there is a DNF formula ψ of size at most k s.t. $\varphi \equiv$

What about certificates for membership?

- there exists a formula ψ such that
- for all assignments φ and ψ evaluate to the same

What about $\overline{\text { MinEqDNF? }}$

Recall the certificate-based definitions of NP and coNP, where $q: \mathbb{N} \rightarrow \mathbb{N}$ is a polynomial, $x \in\{0,1\}^{*}$ and M is a polynomial-time, det. verifier.

NP $x \in L$ iff $\exists u \in\{0,1\}^{q(|x|)} \cdot M(x, u)=1$
coNP $x \in L$ iff $\forall u \in\{0,1\}^{q(|x|)} . M(x, u)=1$

ExactIndset and MinEqDNF are in a class defined by

$$
x \in L \text { iff } \exists u \in\{0,1\}^{q(|x|)} \cdot \forall v \in\{0,1\}^{q(|x|)} \cdot M(x, u, v)=1
$$

This class is called Σ_{2}^{p}.

Bounded QBF

Another natural problem within Σ_{2}^{p} is QBF with one alternation!

$$
\Sigma_{2} S A T=\left\{\exists \overrightarrow{u_{1}} \forall \overrightarrow{u_{2}} \cdot \varphi\left(\overrightarrow{u_{1}}, \overrightarrow{u_{2}}\right) \mid \text { formula is true }\right\}
$$

where $\overrightarrow{u_{i}}$ denotes a finite sequence of Boolean variables.

Remarks

- in fact, Σ_{2} SAT is complete for Σ_{2}^{p}
- more alternations lead to a whole hierarchy
- all of it is contained in PSPACE

Agenda

- ExactIndset, MinEqDNF, and bounded QBF \checkmark
- $\Sigma_{i}^{p}, \Pi_{i}^{p}$, and PH
- properties of the polynomial hierarchy
- more examples

Definition

Definition (Polynomial Hierarchy)

For $i \geq 1$, a language $L \subseteq\{0,1\}^{*}$ is in Σ_{i}^{p} if there exists a polynomial-time TM M and a polynomial q such that

$$
\begin{aligned}
& x \in L \\
& \text { if and only if }
\end{aligned}
$$

$\exists u_{2} \in\{0,1\}^{q(|x|)}$.

$$
\forall u_{1} \in\{0,1\}^{q(|x|)}
$$

$$
Q_{i} u_{i} \in\{0,1\}^{q(|x|)} .
$$

$$
M\left(x, u_{1}, u_{2}, \ldots, u_{i}\right)=1
$$

where Q_{i} is \exists if i is odd and \forall otherwise.

- the polynomial hierarchy is the set $\mathrm{PH}=\bigcup_{i \geq 1} \Sigma_{i}^{p}$
- $\Pi_{i}^{p}=\mathbf{c o} \Sigma_{i}^{p}=\left\{\bar{L} \mid L \in \Sigma_{i}^{p}\right\}$

Generalization of NP and coNP

- $N P=\Sigma_{1}^{p}$ and coNP $=\Pi_{1}^{p}$
- $\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p} \subseteq \Sigma_{i+2}^{p}$
- hence PH $=\bigcup_{i \geq 1} \Pi_{i}^{p}$
- PH \subseteq PSPACE

Collapse

It is an open problem whether there is an i such that $\Sigma_{i}^{p}=\Sigma_{i+1}^{p}$.
This would imply that $\Sigma_{i}^{\mathrm{p}}=\mathrm{PH}$: the hierarchy collapses to the i-th level.

Most researchers believe that the hierarchy does not collapse.

Theorem (Collapse)

- For every $i \geq 1$, if $\Sigma_{i}^{p}=\Pi_{i}^{p}$ then $\mathrm{PH}=\Sigma_{i}^{p}$
- If $\mathrm{P}=\mathrm{NP}$ then $\mathrm{PH}=\mathrm{P}$, i.e. the hierarchy collapses to P .

Proof on transparency.

Completeness

For each level of the hierarchy completeness is defined in terms of polynomial Karp reductions.

- if there exists a PH-complete language, then the hierarchy collapses
- PH \neq PSPACE unless the hierarchy collapses

Theorem (bounded QBF)

For each $i \geq 1, \Sigma_{i}$ SAT is Σ_{i}^{p}-complete, where Σ_{i} SAT is the language of true quantified Boolean formulas of the form

$$
\exists \overrightarrow{u_{1}} \forall \overrightarrow{u_{2}} \ldots Q_{i} \vec{u}_{i} \cdot \varphi\left(\overrightarrow{u_{1}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{i}}\right)
$$

Agenda

- ExactIndset, MinEqDNF, and bounded QBF \checkmark
- $\Sigma_{i}^{p}, \Pi_{i}^{p}$, and PH \checkmark
- properties of the polynomial hierarchy \checkmark
- more examples

Integer Expressions

An integer expression I is defined by the following BNF for binary numbers \vec{b} :

$$
I::=\vec{b}|I+I| I \cup I
$$

The language $\mathcal{L}(I) \subseteq \mathbb{N}$ is defined by

- $\mathcal{L}(\vec{b})=\{n\}$ where n is the natural number represented by \vec{b}
- $\mathcal{L}\left(l_{1}+l_{2}\right)=\left\{n_{1}+n_{2} \mid n_{i} \in \mathcal{L}\left(l_{i}\right)\right\}$
- $\mathcal{L}\left(I_{1} \cup I_{2}\right)=\mathcal{L}\left(I_{1}\right) \cup \mathcal{L}\left(I_{2}\right)$

Example: $\mathcal{L}(1+(2 \cup 3+4))=\{3,8\}$
A set $M \subseteq \mathbb{N}$ is connected if for all $x, z \in M$ and every $x<y<z$ also $y \in M$.

A component of M is a maximal connected subset of M.

Integer Expressions

- membership of a number in the language of an integer expression: NP-complete
- integer expression inequivalence: Σ_{2}^{p}-complete
- Does $\mathcal{L}(I)$ have a component of size at least k ?: Σ_{3}^{p}-complete

Regular Expressions

Consider regular expressions with union and concatentation only. In addition, we define an interleaving operator on words

$$
\begin{gathered}
x_{1} x_{2} \ldots x_{k} \mid y_{1} y_{2} \ldots y_{k} \\
= \\
x_{1} y_{1} x_{2} y_{2} \ldots x_{k} y_{k}
\end{gathered}
$$

where y_{i} can be strings of arbitrary length.

Regular expression equivalence for star-free expressions with interleaving is Π_{2}^{p}-complete.

Context-free languages

Consider context-free grammars defining unary languages.

- $\left\{\left\langle G_{1}, G_{2}\right\rangle \mid \mathcal{L}\left(G_{1}\right) \neq \mathcal{L}\left(G_{2}\right)\right\}$ is Σ_{2}^{p}-complete
- note that for non-unary languages this problem is undecidable

What have we learnt?

- the polynomial hierarchy is a natural generalization of NP and coNP
- bounded alternation QBFs are complete problems for each level of the hierarchy
- in the limit - unbounded alternations - the hierarchy approaches PSPACE
- the hierarchy is widely believed not to collapse to any level

Up next: time/space tradeoffs, $\operatorname{TISP}(f, g)$

Further Reading

- survey on complete problems for various levels of the hierarchy:
- Schaefer and Umans Completeness in the Polynomial-Time Hierarchy - A Compendium
- PH can be equivalently characterized using alternating TMs (see exercise)
- for a survey on alternation see Chandra, Kozen, Stockmeyer Alternation in Journal of the ACM 28(1), 1981.
- http://portal.acm.org/citation.cfm?id=322243

