Complexity Theory – Final Exam

Please note: If not stated otherwise, all answers have to be justified.

Last name:	
First name:	
Student ID no.:	
Signature:	

Remarks

- If you feel ill, let us know immediately.
- Fill in all the required information and don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You have 10 minutes to read the questions and, after that, 120 minutes to write your solutions.
- You are not allowed to use auxiliary means other than your pen.
- You may write your answers in English or German.
- Check if you received 8 sheets of paper.
- Write your solutions directly into the exam booklet. Please ask if you need additional (scrap) paper. Only solutions written on official paper will be corrected.
- You can obtain 40 points. You need 17 points to pass including potential bonuses awarded.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	\sum

<u>Exercise 1</u> True/False

Points are awarded as follows:

	unsure \Box	unsure \boxtimes
correct answer	1P	$0.5\mathrm{P}$
wrong answer	-1P	-0.5P
no answer	0P	0P

Remarks

- All claims are definitely either true or false.
- Tick $unsure \square$ in case of doubt to reduce a potential point deduction.
- A negative total implies zero points awarded for this exercise.

	true	false	unsure
PP has complete problems.			
$\bigcup_{k\in\mathbb{N}}\mathbf{IP}[n^k] = \bigcup_{k\in\mathbb{N}}\mathbf{AM}[n^k].$			
If $\mathbf{L} \neq \mathbf{P}$, then \mathbf{L} is closed under \leq_p .			
Every probabilistic TM running in expected polynomial time decides a language in $\mathbf{ZPP} := \mathbf{RP} \cap \mathbf{coRP}$.			
If graph isomorphism is NP -complete, then $\Sigma_2^p = \Pi_2^p$.			
3SAT has no polynomially-sized, interactive, zero-knowledge proofs.			
For every $L \in \mathbf{IP}$ there is an alternating TM deciding L in polynomial time.			
If every unary language $L \in \mathbf{NP}$ is already in \mathbf{P} , then $\mathbf{EXP} = \mathbf{NEXP}$.			
If $\mathbf{PH} = \mathbf{PSPACE}$, then $\Sigma_k^p \subsetneq \Sigma_{k+1}^p$ for all $k \in \mathbb{N}$.			
AC = NC.			

Exercise 2 "One-liners"

Give a short answer. For **Claims** state clearly whether they hold or not.

Notation: Let $\mathbf{polyL} := \bigcup_{k \in \mathbb{N}} \mathbf{SPACE}((\log n)^k)$ be the class of languages decidable in poly-logarithmic space.

 $\label{eq:claim:claim:} \mathbf{Claim:} \quad \mathbf{polyL} \subsetneq \mathbf{EXP}.$

Answer:	
Question :	State Ladner's theorem:
Answer:	
Claim:	Probably, $\mathbf{NP} \neq \mathbf{PCP}(1/n \cdot \log n, 1)$ as otherwise
Answer:	
$\mathbf{Question}$:	State a coNL -complete problem.
Answer:	
$\mathbf{Question}$:	By what kind of certificates is NL characterized?
Answer:	
Question :	We know that unless $\mathbf{P} = \mathbf{NP}$ there is some $\rho \in (0, 1]$ s.t. MAX3SAT cannot be ρ -approximated in polynomial time. State a problem for which we know that this holds for every $\rho \in (0, 1]$.
Answer:	
Question :	The reduction in the proof by Cook-Levin takes a Turing machine M and an input x and maps it on some CNF formula $\phi_{M;x}$. Let $N_{M;x}$ be the number of certificates u s.t. $M(x, u) = 1$. How is $N_{M;x}$ related to $\phi_{M;x}$?
Answer:	
Question::	State a language in $\mathbf{NC}^2 \setminus \mathbf{AC}^0$ other than PARITY.
Answer:	

Consider the following set \mathcal{C} of complexity classes.

$$\mathcal{C} = \{ \mathbf{NC}^2, \mathbf{L}, \mathbf{IP}, \mathbf{ZPP}, \mathbf{PCP}(\log n, 1), \mathbf{\Sigma}_2^p \cap \mathbf{\Pi}_2^p, \mathbf{BPP}, \mathbf{PH} \}$$

- (a) Draw a directed graph with nodes \mathcal{C} such that there is a path from A to B if $A \subseteq B$.
- (b) The "deterministic space hierarchy theorem" says that for any space-constructible functions f, g with $f(n) \in o(g(n))$ we have

 $\mathbf{SPACE}(f(n)) \subsetneq \mathbf{SPACE}(g(n)).$

Show that $\mathbf{NL} \subsetneq \mathbf{IP}$.

(c) It is unknown whether $\mathbf{P} = \mathbf{L}$ and whether $\mathbf{P} = \mathbf{PSPACE}$. However, not both equalities can hold at the same time.

Which classes in \mathcal{C} coincide

- i) under the assumption that $\mathbf{P} = \mathbf{L}$?
- ii) under the assumption that $\mathbf{P} = \mathbf{PSPACE}$?

Given an undirected graph G = (V, E) we call $C \subseteq V$ a *clique* of G if for any two distinct nodes u, v of C there is an edge $(u, v) \in E$. A clique C is *maximal* if $C \cup \{u\}$ is not a clique for any $u \in V \setminus C$.

Consider the following decision and function problems related to cliques.

- CLIQUE_D := { $\langle G, k \rangle | G$ has a clique of size at least k}.
- EXACTCLIQUE_D := { $\langle G, k \rangle$ | Every maximal clique in G has size exactly k}.
- CLIQUESIZE(G) := max{ |C| | C is a clique of G}.

Remark: You may assume that $CLIQUE_D$ is **NP**-complete.

- (a) Show how to calculate CLIQUESIZE(G) in time $\mathcal{O}(T(n) \cdot \log n)$ under the assumption that $CLIQUE_D$ can be decided in time T(n) for any graph G of size n.
- (b) Recall the definition of **DP**:

$$\mathbf{DP} := \{ L_1 \cap L_2 \mid L_1 \in \mathbf{NP}, L_2 \in \mathbf{coNP} \}.$$

Show that EXACTCLIQUE_D is in **DP**.

(c) You may assume that the following language, $EXACTINDSET_D$, is **DP**-complete:

EXACTINDSET_D := { $\langle G, k \rangle$ | Any independent set of maximal size in G has size exactly k}.

Show that EXACTCLIQUE_D is **DP**-complete.

(d) Show that for no $\rho \in (0, 1]$ there exists a poly-time ρ -approximation of CLIQUESIZE unless $\mathbf{P} = \mathbf{NP}$.

A path $v_0v_1 \dots v_k$ in a <u>directed</u> graph G = (V, E) with nodes V and edges $E \subseteq V \times V$ is a *cycle* if $v_k = v_0$. Define

 $CYCLE := \{ \langle G, v \rangle \mid v \text{ lies on a cycle of } G \}.$

Show that CYCLE is **NL**-complete.

Explain the error in the following proof of $\mathbf{P} \neq \mathbf{NP}$:

- 1) Suppose $\mathbf{P} = \mathbf{NP}$.
- 2) Then for some $k \in \mathbb{N}$, SAT $\in \mathbf{DTIME}(n^k)$.
- 3) As every language in **NP** is reducible to SAT, **NP** \subseteq **DTIME** (n^k) .
- 4) Due to the assumption $\mathbf{P} = \mathbf{NP}, \mathbf{P} \subseteq \mathbf{DTIME}(n^k)$.
- 5) Then $\mathbf{DTIME}(n^k) \subsetneq \mathbf{DTIME}(n^{k+1})$ is a contradiction with $\mathbf{P} \subseteq \mathbf{DTIME}(n^k)$.

Consider the following kind of computation:

Starting from a deterministic polynomial-time TM V, we extend V as follows:

- V has two special tapes:
 - a query-tape on which it can write Boolean formulae and
 - a response-tape.
- At any step of the computation, V can send the formula on the query tape to a SAT-prover that immediately tells V if the formula is satisfiable or not by writing either 1 or 0 to the response-tape.

Let $\mathbf{SAT}[k]$ be the class of all languages L which are decided by deterministic polynomial-time TMs asking at most k SAT-questions (where k may depend on the input length).

(a) The Boolean closure of NP is the class of all languages L of the form:

$$L := \bigcup_{i=1}^{m} \bigcap_{j=1}^{n} L_{i,j} \text{ where } L_{i,j} \in \mathbf{NP} \cup \mathbf{coNP}$$

Show that for any such language L there exists a constant k s.t. $L \in \mathbf{SAT}[k]$.

(b) Show that $\mathbf{SAT}[\operatorname{poly}(n)] \subseteq \Sigma_2^p \cap \Pi_2^p$.

Remark: **SAT**[poly(n)] refers to the class of languages decided by deterministic polynomial-time TMs which can query the SAT-prover a number of times polynomial in the length of the input.