
Technische Universität München Summer term 2010
Theoretische Informatik August 2, 2010
Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky

Complexity Theory – Final Exam

Please note : If not stated otherwise, all answers have to be justified.

Last name:

First name:

Student ID no.:

Signature:

Remarks

• If you feel ill, let us know immediately.
• Fill in all the required information and don’t forget to sign.
• Write with a non-erasable pen, do not use red or green color.
• You have 10 minutes to read the questions and, after that, 120 minutes to write your solutions.
• You are not allowed to use auxiliary means other than your pen.
• You may write your answers in English or German.
• Check if you received 8 sheets of paper.
• Write your solutions directly into the exam booklet. Please ask if you need additional (scrap) paper.

Only solutions written on official paper will be corrected.
• You can obtain 40 points. You need 17 points to pass including potential bonuses awarded.
• Don’t fill in the table below.
• Good luck!

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7
∑

Exercise 1 True/False each 1P=10P

Points are awarded as follows:

unsure � unsure �
correct answer 1P 0.5P
wrong answer -1P -0.5P

no answer 0P 0P

Remarks

• All claims are definitely either true or false.

• Tick unsure � in case of doubt to reduce a potential point deduction.

• A negative total implies zero points awarded for this exercise.

true false unsure

PP has complete problems.
� � �

⋃
k∈N IP[nk] =

⋃
k∈N AM[nk].

� � �

If L 6= P, then L is closed under ≤p.
� � �

Every probabilistic TM running in expected polynomial time
decides a language in ZPP := RP ∩ coRP.

� � �

If graph isomorphism is NP-complete, then Σp
2 = Πp

2.
� � �

3Sat has no polynomially-sized, interactive, zero-knowledge
proofs.

� � �

For every L ∈ IP there is an alternating TM deciding L in
polynomial time.

� � �

If every unary language L ∈ NP is already in P, then EXP =
NEXP.

� � �

If PH = PSPACE, then Σp
k (Σp

k+1 for all k ∈ N.
� � �

AC = NC.
� � �

Exercise 2 “One-liners” each 1P=8P

Give a short answer. For Claims state clearly whether they hold or not.

Notation : Let polyL :=
⋃

k∈N SPACE((log n)k) be the class of languages decidable in poly-logarithmic
space.

Claim : polyL (EXP.

Answer :

Question : State Ladner’s theorem:

Answer :

Claim : Probably, NP 6= PCP(1/n · log n, 1) as otherwise ...

Answer :

Question : State a coNL-complete problem.

Answer :

Question : By what kind of certificates is NL characterized?

Answer :

Question : We know that unless P = NP there is some ρ ∈ (0, 1] s.t. Max3Sat cannot be
ρ-approximated in polynomial time. State a problem for which we know that this
holds for every ρ ∈ (0, 1].

Answer :

Question : The reduction in the proof by Cook-Levin takes a Turing machine M and an input
x and maps it on some CNF formula φM ;x. Let NM ;x be the number of certificates u
s.t. M(x, u) = 1. How is NM ;x related to φM ;x?

Answer :

Question: : State a language in NC2 \AC0 other than Parity.

Answer :

Exercise 3 2P+2P+2P=6P

Consider the following set C of complexity classes.

C = {NC2,L, IP,ZPP,PCP(log n, 1),Σp
2 ∩Πp

2,BPP,PH}

(a) Draw a directed graph with nodes C such that there is a path from A to B if A ⊆ B.

(b) The “deterministic space hierarchy theorem” says that for any space-constructible functions f, g with
f(n) ∈ o(g(n)) we have

SPACE(f(n)) (SPACE(g(n)).

Show that NL (IP.

(c) It is unknown whether P = L and whether P = PSPACE. However, not both equalities can hold
at the same time.

Which classes in C coincide

i) under the assumption that P = L?

ii) under the assumption that P = PSPACE?

Exercise 4 2P+2P+2P+1P=7P

Given an undirected graph G = (V,E) we call C ⊆ V a clique of G if for any two distinct nodes u, v of C
there is an edge (u, v) ∈ E. A clique C is maximal if C ∪ {u} is not a clique for any u ∈ V \ C.

Consider the following decision and function problems related to cliques.

• CliqueD := {〈G, k〉 | G has a clique of size at least k}.
• ExactCliqueD := {〈G, k〉 | Every maximal clique in G has size exactly k}.
• cliqueSize(G) := max{ |C| | C is a clique of G}.

Remark : You may assume that CliqueD is NP-complete.

(a) Show how to calculate cliqueSize(G) in time O(T (n) · log n) under the assumption that CliqueD

can be decided in time T (n) for any graph G of size n.

(b) Recall the definition of DP:

DP := {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}.

Show that ExactCliqueD is in DP.

(c) You may assume that the following language, ExactIndsetD, is DP-complete:

ExactIndsetD := {〈G, k〉 | Any independent set of maximal size in G has size exactly k}.

Show that ExactCliqueD is DP-complete.

(d) Show that for no ρ ∈ (0, 1] there exists a poly-time ρ-approximation of cliqueSize unless P = NP.

Exercise 5 4P

A path v0v1 . . . vk in a directed graph G = (V,E) with nodes V and edges E ⊆ V ×V is a cycle if vk = v0.

Define
Cycle := {〈G, v〉 | v lies on a cycle of G }.

Show that Cycle is NL-complete.

Exercise 6 2P

Explain the error in the following proof of P 6= NP:

1) Suppose P = NP.

2) Then for some k ∈ N, Sat ∈ DTIME(nk).

3) As every language in NP is reducible to Sat, NP ⊆ DTIME(nk).

4) Due to the assumption P = NP, P ⊆ DTIME(nk).

5) Then DTIME(nk) (DTIME(nk+1) is a contradiction with P ⊆ DTIME(nk).

Exercise 7 1P+2P=3P

Consider the following kind of computation:

Starting from a deterministic polynomial-time TM V , we extend V as follows:

• V has two special tapes:

– a query-tape on which it can write Boolean formulae and

– a response-tape.

• At any step of the computation, V can send the formula on the query tape to a Sat-prover that
immediately tells V if the formula is satisfiable or not by writing either 1 or 0 to the response-tape.

Let SAT[k] be the class of all languages L which are decided by deterministic polynomial-time TMs
asking at most k Sat-questions (where k may depend on the input length).

(a) The Boolean closure of NP is the class of all languages L of the form:

L :=
m⋃

i=1

n⋂
j=1

Li,j where Li,j ∈ NP ∪ coNP

Show that for any such language L there exists a constant k s.t. L ∈ SAT[k].

(b) Show that SAT[poly(n)] ⊆ Σp
2 ∩Πp

2.

Remark : SAT[poly(n)] refers to the class of languages decided by deterministic polynomial-time
TMs which can query the Sat-prover a number of times polynomial in the length of the input.

