Technische Universitidt Miinchen
Theoretische Informatik
Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky

Last name:

First name:

SOLUTION

Complexity Theory — Final Exam

Summer term 2010

Please note: If not stated otherwise, all answers have to be justified.

Student ID no.:

Signature:

Remarks

e If you feel ill, let us know immediately.

e Fill in all the required information and don’t forget to sign.
e Write with a non-erasable pen, do not use red or green color.

August 2, 2010

e You have 10 minutes to read the questions and, after that, 120 minutes to write your solutions.

e You are not allowed to use auxiliary means other than your pen.
e You may write your answers in English or German.

e Check if you received 8 sheets of paper.
e Write your solutions directly into the exam booklet. Please ask if you need additional (scrap) paper.

Only solutions written on official paper will be corrected.
e You can obtain 40 points. You need 17 points to pass including potential bonuses awarded.
e Don't fill in the table below.

e Good luck!

Ex1

Ex2

Ex3

Ex4

Exb5

Ex6

Ex7

AC = NC.

Exercise 1 True/False each 1P=10P
Points are awarded as follows:
unsure [| unsure X
correct answer 1P 0.5P
wrong answer -1P -0.5P
no answer 0P 0P
Remarks
e All claims are definitely either true or false.
e Tick unsure [in case of doubt to reduce a potential point deduction.
e A negative total implies zero points awarded for this exercise.
true false | unsure
X O O
PP has complete problems.
X O O
UkeN Ip [nk] = UkeN AM[nk]
O X O
If L # P, then L is closed under <,
X O O
Every probabilistic TM running in expected polynomial time
decides a language in ZPP := RP N coRP.
X 0 0
If graph isomorphism is NP-complete, then 35 = TI5.
O X O
3SAT has no polynomially-sized, interactive, zero-knowledge
proofs.
X O O
For every L € IP there is an alternating TM deciding L in
polynomial time.
X 0 0
If every unary language L € NP is already in P, then EXP =
NEXP.
O X O
If PH = PSPACE, then ¥} C ¥}, for all k € N.
X O O

Exercise 2 “One-liners” each 1P=S8P

Give a short answer. For Claims state clearly whether they hold or not.

Notation: Let polyL := |,y SPACE((logn)*) be the class of languages decidable in poly-logarithmic
space.

Claim: polyL C EXP.

Answer : Yes as polyL C PSPACE by the space hierarchy theorem.

Question: State Ladner’s theorem:

Answer : If P # NP, then there exists a L € NP \ P which is not NP-complete.

Claim: Probably, NP # PCP(1/n -logn, 1) as otherwise ...

Answer : P =NP.

Question: State a coNL-complete problem.

Answer : PATH

Question: By what kind of certificates is NL characterized?

Answer : (poly-length) read-once

Question: We know that unless P = NP there is some p € (0,1] s.t. MAX3SAT cannot be
p-approximated in polynomial time. State a problem for which we know that this
holds for every p € (0,1].

Answer: INDSET

Question: The reduction in the proof by Cook-Levin takes a Turing machine M and an input
x and maps it on some CNF formula ¢ps.,. Let Ny, be the number of certificates u
s.t. M(xz,u) = 1. How is Ny, related to ¢pr.,?

Answer : Ny, is the number of satisfying assignments of ¢y, (at least when restricting assi-
gnments to the variables appearing in ¢p..).

Question:: State a language in NC? \ AC" other than PARITY.

Answer : PARITY.

Exercise 3 2P4+2P+2P=6P
Consider the following set C of complexity classes.
C = {NC? L,IP,ZPP,PCP(logn, 1), 5 N I1;, BPP, PH}

(a) Draw a directed graph with nodes C such that there is a path from A to B if A C B.

(b) The “deterministic space hierarchy theorem” says that for any space-constructible functions f, g with
f(n) € o(g(n)) we have

SPACE(f(n)) C SPACE(g(n)).
Show that NL C IP.

(¢) It is unknown whether P = L and whether P = PSPACE. However, not both equalities can hold
at the same time.

Which classes in C coincide
i) under the assumption that P = L7
ii) under the assumption that P = PSPACE?

Solution:
BPP
/ \
L— NC2— ZPP NI, — PH —— IP
~ el

(a) PCP(logn,1)

(b) e By Savitch’s theorem we have NL C SPACE((logn)?).

e By the deterministic space hierarchy theorem, it follows that SPACE((logn)?) C SPACE(n) C
PSPACE.

o As IP equals PSPACE, the result follows.
(¢) o If P equals L, then L equals also NC.
o If P equals PSPACE, then the remaining six classes coincide.

Exercise 4 2P4+2P4+2P+1P=7P
Given an undirected graph G = (V, E) we call C C V a clique of G if for any two distinct nodes u, v of C
there is an edge (u,v) € E. A clique C' is mazimal if C'U {u} is not a clique for any u € V'\ C.
Consider the following decision and function problems related to cliques.

e CLIQUEp := {(G, k) | G has a clique of size at least k}.

o EXACTCLIQUEp := {(G, k) | Every maximal clique in G has size exactly k}.

e CLIQUESIZE(G) := max{ |C| | C is a clique of G}.
Remark: You may assume that CLIQUEp is NP-complete.

(a) Show how to calculate CLIQUESIZE(G) in time O(T'(n) - logn) under the assumption that CLIQUEp
can be decided in time T'(n) for any graph G of size n.

(b) Recall the definition of DP:
DP = {Ll N Lo | L, e NP, L, € CONP}.

Show that EXACTCLIQUEp is in DP.

(c) You may assume that the following language, EXACTINDSETp, is DP-complete:
EXACTINDSET) := {(G, k) | Any independent set of maximal size in G has size exactly k}.

Show that EXACTCLIQUEp is DP-complete.
(d) Show that for no p € (0, 1] there exists a poly-time p-approximation of CLIQUESIZE unless P = NP.

Solution:

(a) The maximal size of any clique is given by number of nodes of the graph G which is surely bounded
by its representation length n := |G|. We use binary search to find the optimal value in the interval
[0, n]: the result of a query (G, k) € CLIQUEp determines whether to descend into the upper or lower
half of the remaining interval. This results in at most logn calls to CLIQUEp where every call takes
time at most T'(n).

(b) Remark: There was an error in the definition of EXACTCLIQUE.
D1: The definition should have been

(G, k) € EXACTCLIQUEp :< k = CLIQUESIZE(G).

similar to EXACTINDSET.

D2: What we defined instead was:

(G, k) € EXACTCLIQUEp :< V(O : C is a maximal clique of G = |C| = k.

Still, for both definitions EXACTCLIQUEp is in DP:
D1: We have

(G, k) € ExacTtCLIQUE), iff (G, k) € CLIQUEp A (G, k + 1) ¢ CLIQUEp.

Define now L := {(G,k) | (G,k + 1) € CLIQUEp}. L is clearly in NP, so its complement is in
coNP. We then have B
ExXAcTCLIQUEp = CLIQUE, N L € DP

Remark: Note that is not sufficient to show that EXACTCLIQUE}, is in X5 NIIY as we only know
that DP C 2N 1%,

D2: Obviously, we can decide in polynomial time if a given subset C' C V' is a maximal clique and if
|C'| = k. Hence,
VC' : C is a maximal clique of G = |C| =k

is a calculation in IT] = coNP which is a subset of DP.
Solutions relying on any of the two definitions have been accepted.

Remark: This exercise makes only sense w.r.t. definition D1. Every student has therefore been awar-
ded 2P.

Given G = (V, E), set G' := (V. {(u,v) € V xV | u# v} \ E), i.e., two nodes of G’ are connected by
an edge iff they are not connected by an edge in G. Now, the cliques of G are in bijection with the
independent sets of G’. This gives us the following polynomial time reduction:

(G, k) € EXACTINDESET iff f((G,k)) := (G', k) € EXACTINDSETp.
Remark: This exercise makes only sense w.r.t. definition D1. Every student has therefore been awar-

ded 1P.

This follows immediately from the reduction given in (c) and the fact that INDSET is NP-hard to
p-approximate for any p € (0, 1].

Exercise 5 4P

A path vy . .. v in a directed graph G = (V, E') with nodes V' and edges £ C V x V' is a cycle if v, = vy.
Define
CyCLE := {(G,v) | v lies on a cycle of G }.

Show that CYCLE is NL-complete.

Solution:
e CYCLE € NL:

v is in some cycle of G iff there is a path from s to s in G, i.e., CYCLE is log-reducible to PATH via
the reduction f((G,v)) := (G, v,v). As NL is closed under <., the result follows.

e CYCLE is NL-hard via PATH <;,; CYCLE:

Given (G, s,t) add a new node ¢ to G which has exactly one outgoing edge (¢, s) and one incoming
edge (t,c¢). We can do this in log-space. If there is a path 7w from s to ¢ in G, then there is now also
a cycle cme. On the other hand, every cycle ¢ which contains ¢ has to start with the edge (¢, s) and
end with the edge (¢,¢), i.e., (= csmtc for some path 7. We may assume that ¢ does not appear in
7 by simply taking a cycle ¢ of minimal length. Then 7 is a path from s to ¢t in G.

Exercise 6

Explain the error in the following proof of P # NP:
1) Suppose P = NP.
2) Then for some k € N, SAT € DTIME(n").
3) As every language in NP is reducible to SAT, NP C DTIME(n*).
4) Due to the assumption P = NP, P C DTIME(n*).
5) Then DTIME(n*) C DTIME(n**!) is a contradiction with P C DTIME(n*).

Solution: The time needed for calculating the reduction isn’t taken into account in step 3.

2P

Exercise 7 1P4+2P=3P

Consider the following kind of computation:
Starting from a deterministic polynomial-time TM V', we extend V as follows:
e V has two special tapes:
— a query-tape on which it can write Boolean formulae and
— a response-tape.

e At any step of the computation, V' can send the formula on the query tape to a SAT-prover that
immediately tells V' if the formula is satisfiable or not by writing either 1 or 0 to the response-tape.

Let SAT|k] be the class of all languages L which are decided by deterministic polynomial-time TMs
asking at most k& SAT-questions (where k may depend on the input length).

(a) The Boolean closure of NP is the class of all languages L of the form:
L:=|J()Li; where L;; € NP U coNP
i=1j=1

Show that for any such language L there exists a constant k s.t. L € SAT[k].
(b) Show that SAT[poly(n)] C X N IIL.

Remark: SAT[poly(n)] refers to the class of languages decided by deterministic polynomial-time
TMs which can query the SAT-prover a number of times polynomial in the length of the input.

Solution:

(a) For alanguage A C X* set A' := Aand A™! := 3*\ A. For every language L;; we find an NP-language
Az‘j and a Cij c {1, —1} s.t. Lz’j = AZC]” Then

L=UNay

i=1j=1
Now let f;; be the poly-time reduction from A4;; to SAT and let a;;(x) be the answer by the SAT-solver

?
for the query f;;(x) € SAT. We then have:

x e Liff \//\a%(x)zlWitha1 =aanda':=1—a.

ij
i=1j=1

We therefore need to do at most n-m queries to the SAT-solver and then evaluate the n-CNF formula
on the valuation given by the answers by the SAT-solver.

(b) Let M be a det. polynomial-time TM which uses at most a polynomial number of queries to the
SAT-prover. Let ¢(n) be the polynomial bounding the number of queries for an input of length 7.

We obtain from M the det. polynomial-time TM N which takes the same input as M and additionally
a sequence of Boolean formulae ¢y, ..., ¢4 and also a bit string 3 of length g(n) where ; = 1 iff ¢;
is satisfiable. Of course, all the formulae ¢; are of polynomial length (otherwise V' wouldn’t be able
to write them on its query-tape).

On input (x, ¢1, ..., Pgn), 3), N now simulates M on x until the first query. It then checks that the
first query of M is indeed the formula ¢; and takes 3; as the response by the SAT-prover. This way,
N simulates M on z without any interaction with the prover. It accepts if M accepts. We now have

q(n)

‘reLiﬂ‘Elgbh"‘7¢q(n)7517'”7ﬁq(n) :N(£7¢17"'7¢q(n)7ﬁlv"'7ﬁq(n)):1/\ /\Bl:1<:>¢z€ SAT-

=1

Note that L
Bi=1< ¢, € SAT= (8, =0= ¢; € SAT) A (B; = 1 = ¢; € SAT)

is a computation in NP UcoNP. The complete computation is therefore in ¥5. As SAT[k] is closed
under complement, we immediately obtain that it is also contained in TT5.

