SOLUTION

Complexity Theory - Final Exam

Please note: If not stated otherwise, all answers have to be justified.

Last name:

First name:

Student ID no.: \qquad

Signature:

Remarks

- If you feel ill, let us know immediately.
- Fill in all the required information and don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You have 10 minutes to read the questions and, after that, 120 minutes to write your solutions.
- You are not allowed to use auxiliary means other than your pen.
- You may write your answers in English or German.
- Check if you received 8 sheets of paper.
- Write your solutions directly into the exam booklet. Please ask if you need additional (scrap) paper. Only solutions written on official paper will be corrected.
- You can obtain 40 points. You need 17 points to pass including potential bonuses awarded.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	\sum

Points are awarded as follows:

	unsure \square	unsure \boxtimes
correct answer	1 P	0.5 P
wrong answer	-1 P	-0.5 P
no answer	0 P	0 P

Remarks

- All claims are definitely either true or false.
- Tick unsure \square in case of doubt to reduce a potential point deduction.
- A negative total implies zero points awarded for this exercise.

	true false	unsure
PP has complete problems.	$\boxtimes \quad \square$	\square
$\bigcup_{k \in \mathbb{N}} \mathbf{I P}\left[n^{k}\right]=\bigcup_{k \in \mathbb{N}} \mathbf{A M}\left[n^{k}\right]$.	$\boxtimes \quad \square$	\square
If $\mathbf{L} \neq \mathbf{P}$, then \mathbf{L} is closed under \leq_{p}.	$\square \boxtimes$	\square
Every probabilistic TM running in expected polynomial time decides a language in $\mathbf{Z P P}:=\mathbf{R P} \cap \mathbf{c o R P}$.	$\boxtimes \quad \square$	\square
If graph isomorphism is NP-complete, then $\boldsymbol{\Sigma}_{2}^{p}=\boldsymbol{\Pi}_{2}^{p}$.	$\boxtimes \quad \square$	\square
3SAT has no polynomially-sized, interactive, zero-knowledge proofs.	$\square \boxtimes$	\square
For every $L \in \mathbf{I P}$ there is an alternating TM deciding L in polynomial time.	$\boxtimes \quad \square$	\square
If every unary language $L \in \mathbf{N P}$ is already in \mathbf{P}, then $\mathbf{E X P}=$ NEXP.	$\boxtimes \quad \square$	\square
If $\mathbf{P H}=\mathbf{P S P A C E}$, then $\boldsymbol{\Sigma}_{k}^{p} \subsetneq \boldsymbol{\Sigma}_{k+1}^{p}$ for all $k \in \mathbb{N}$.	$\square \quad \boxtimes$	\square
$\mathrm{AC}=\mathrm{NC}$.	$\boxtimes \quad \square$	\square

Give a short answer. For Claims state clearly whether they hold or not.
Notation: Let polyL $:=\bigcup_{k \in \mathbb{N}} \operatorname{SPACE}\left((\log n)^{k}\right)$ be the class of languages decidable in poly-logarithmic space.
Claim: polyL \subsetneq EXP.

Answer: Yes as polyL \subsetneq PSPACE by the space hierarchy theorem.

Question: State Ladner's theorem:

Answer: If $\mathbf{P} \neq \mathbf{N P}$, then there exists a $L \in \mathbf{N P} \backslash \mathbf{P}$ which is not NP-complete.
Claim: \quad Probably, $\mathbf{N P} \neq \mathbf{P C P}(1 / n \cdot \log n, 1)$ as otherwise \ldots

Answer: $\quad \mathbf{P}=\mathbf{N P}$.

Question: State a coNL-complete problem.

Answer: Path

Question: By what kind of certificates is NL characterized?

Answer: (poly-length) read-once

Question: We know that unless $\mathbf{P}=\mathbf{N P}$ there is some $\rho \in(0,1]$ s.t. Max3Sat cannot be ρ-approximated in polynomial time. State a problem for which we know that this holds for every $\rho \in(0,1]$.

Answer: IndSET

Question: The reduction in the proof by Cook-Levin takes a Turing machine M and an input x and maps it on some CNF formula $\phi_{M ; x}$. Let $N_{M ; x}$ be the number of certificates u s.t. $M(x, u)=1$. How is $N_{M ; x}$ related to $\phi_{M ; x}$?

Answer: $\quad N_{M ; x}$ is the number of satisfying assignments of $\phi_{M ; x}$ (at least when restricting assignments to the variables appearing in $\phi_{M ; x}$).

Question:: State a language in $\mathbf{N C}^{2} \backslash \mathbf{A C}^{0}$ other than PARITY.

Answer: $\overline{\text { PARITY }}$.

Consider the following set \mathcal{C} of complexity classes.

$$
\mathcal{C}=\left\{\mathbf{N C}^{2}, \mathbf{L}, \mathbf{I P}, \mathbf{Z P P}, \mathbf{P C P}(\log n, 1), \boldsymbol{\Sigma}_{2}^{p} \cap \boldsymbol{\Pi}_{2}^{p}, \mathbf{B P P}, \mathbf{P H}\right\}
$$

(a) Draw a directed graph with nodes \mathcal{C} such that there is a path from A to B if $A \subseteq B$.
(b) The "deterministic space hierarchy theorem" says that for any space-constructible functions f, g with $f(n) \in o(g(n))$ we have

$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(g(n)) .
$$

Show that NL \subsetneq IP.
(c) It is unknown whether $\mathbf{P}=\mathbf{L}$ and whether $\mathbf{P}=\mathbf{P S P A C E}$. However, not both equalities can hold at the same time.

Which classes in \mathcal{C} coincide
i) under the assumption that $\mathbf{P}=\mathbf{L}$?
ii) under the assumption that $\mathbf{P}=\mathbf{P S P A C E}$?

Solution:

(a)

(b) - By Savitch's theorem we have NL $\subseteq \operatorname{SPACE}\left((\log n)^{2}\right)$.

- By the deterministic space hierarchy theorem, it follows that $\operatorname{SPACE}\left((\log n)^{2}\right) \subsetneq \operatorname{SPACE}(n) \subseteq$ PSPACE.
- As IP equals PSPACE, the result follows.
(c) - If \mathbf{P} equals \mathbf{L}, then \mathbf{L} equals also NC.
- If \mathbf{P} equals PSPACE, then the remaining six classes coincide.

Given an undirected graph $G=(V, E)$ we call $C \subseteq V$ a clique of G if for any two distinct nodes u, v of C there is an edge $(u, v) \in E$. A clique C is maximal if $C \cup\{u\}$ is not a clique for any $u \in V \backslash C$.
Consider the following decision and function problems related to cliques.

- $\operatorname{Clique}_{D}:=\{\langle G, k\rangle \mid G$ has a clique of size at least $k\}$.
- ExactClique $D_{D}:=\{\langle G, k\rangle \mid$ Every maximal clique in G has size exactly $k\}$.
- CliqueSize $(G):=\max \{|C| \mid C$ is a clique of $G\}$.

Remark: You may assume that CliqUE_{D} is NP-complete.
(a) Show how to calculate CliqueSize (G) in time $\mathcal{O}(T(n) \cdot \log n)$ under the assumption that $\operatorname{Clique}_{D}$ can be decided in time $T(n)$ for any graph G of size n.
(b) Recall the definition of DP:

$$
\mathbf{D P}:=\left\{L_{1} \cap L_{2} \mid L_{1} \in \mathbf{N P}, L_{2} \in \mathbf{c o N P}\right\} .
$$

Show that ExactClique D_{D} is in DP.
(c) You may assume that the following language, $\operatorname{ExACTINDSET}_{D}$, is DP-complete:
$\operatorname{ExactIndset}_{D}:=\{\langle G, k\rangle \mid$ Any independent set of maximal size in G has size exactly $k\}$.
Show that ExactClique ${ }_{D}$ is DP-complete.
(d) Show that for no $\rho \in(0,1]$ there exists a poly-time ρ-approximation of CLIQUESize unless $\mathbf{P}=\mathbf{N P}$.

Solution:

(a) The maximal size of any clique is given by number of nodes of the graph G which is surely bounded by its representation length $n:=|G|$. We use binary search to find the optimal value in the interval $[0, n]$: the result of a query $\langle G, k\rangle \in \mathrm{CLIQUE}_{D}$ determines whether to descend into the upper or lower half of the remaining interval. This results in at most $\log n$ calls to Clique $_{D}$ where every call takes time at most $T(n)$.
(b) Remark: There was an error in the definition of ExactClique.

D1: The definition should have been

$$
\langle G, k\rangle \in \operatorname{ExACTClique}_{D}: \Leftrightarrow k=\operatorname{CLIQUESize}(G)
$$

similar to ExactIndset.
D2: What we defined instead was:

$$
\langle G, k\rangle \in \operatorname{ExactClique}_{D}: \Leftrightarrow \forall C: C \text { is a maximal clique of } G \Rightarrow|C|=k .
$$

Still, for both definitions ExactClique D_{D} is in DP:
D1: We have

$$
\langle G, k\rangle \in \operatorname{Exact}_{\operatorname{Clique}_{D}} \mathrm{iff}\langle G, k\rangle \in \operatorname{CliquE}_{D} \wedge\langle G, k+1\rangle \notin \mathrm{CliquE}_{D} .
$$

Define now $L:=\left\{\langle G, k\rangle \mid\langle G, k+1\rangle \in \operatorname{CLIQUE}_{D}\right\} . L$ is clearly in NP, so its complement is in coNP. We then have

$$
\operatorname{ExactClique}_{D}=\mathrm{Clique}_{D} \cap \bar{L} \in \mathbf{D P}
$$

Remark: Note that is not sufficient to show that ExactClique ${ }_{D}$ is in $\boldsymbol{\Sigma}_{2}^{p} \cap \boldsymbol{\Pi}_{2}^{p}$ as we only know that $\mathbf{D P} \subseteq \boldsymbol{\Sigma}_{2}^{p} \cap \boldsymbol{\Pi}_{2}^{p}$.

D2: Obviously, we can decide in polynomial time if a given subset $C \subseteq V$ is a maximal clique and if $|C|=k$. Hence,

$$
\forall C: C \text { is a maximal clique of } G \Rightarrow|C|=k
$$

is a calculation in $\Pi_{1}^{p}=\mathbf{c o N P}$ which is a subset of DP.
Solutions relying on any of the two definitions have been accepted.
(c) Remark: This exercise makes only sense w.r.t. definition D1. Every student has therefore been awarded 2 P .
Given $G=(V, E)$, set $G^{\prime}:=(V,\{(u, v) \in V \times V \mid u \neq v\} \backslash E)$, i.e., two nodes of G^{\prime} are connected by an edge iff they are not connected by an edge in G. Now, the cliques of G are in bijection with the independent sets of G^{\prime}. This gives us the following polynomial time reduction:

$$
\langle G, k\rangle \in \operatorname{ExactIndesET}_{D} \text { iff } f(\langle G, k\rangle):=\left\langle G^{\prime}, k\right\rangle \in \operatorname{ExACTInDSET}_{D}
$$

(d) Remark: This exercise makes only sense w.r.t. definition D1. Every student has therefore been awarded 1 P .
This follows immediately from the reduction given in (c) and the fact that IndSET is NP-hard to ρ-approximate for any $\rho \in(0,1]$.

A path $v_{0} v_{1} \ldots v_{k}$ in a directed graph $G=(V, E)$ with nodes V and edges $E \subseteq V \times V$ is a cycle if $v_{k}=v_{0}$. Define

$$
\text { Cycle }:=\{\langle G, v\rangle \mid v \text { lies on a cycle of } G\} .
$$

Show that Cycle is NL-complete.

Solution:

- Cycle \in NL:

v is in some cycle of G iff there is a path from s to s in G, i.e., Cycle is \log-reducible to Path via the reduction $f(\langle G, v\rangle):=\langle G, v, v\rangle$. As $\mathbf{N L}$ is closed under $\leq_{\log }$ the result follows.

- Cycle is NL-hard via Path $\leq_{\log }$ Cycle:

Given $\langle G, s, t\rangle$ add a new node c to G which has exactly one outgoing edge (c, s) and one incoming edge (t, c). We can do this in log-space. If there is a path π from s to t in G, then there is now also a cycle $c \pi c$. On the other hand, every cycle ζ which contains c has to start with the edge (c, s) and end with the edge (t, c), i.e., $\zeta=c s \pi t c$ for some path π. We may assume that c does not appear in π by simply taking a cycle ζ of minimal length. Then π is a path from s to t in G.

Explain the error in the following proof of $\mathbf{P} \neq \mathbf{N P}$:

1) Suppose $\mathbf{P}=\mathbf{N P}$.
2) Then for some $k \in \mathbb{N}$, Sat $\in \operatorname{DTIME}\left(n^{k}\right)$.
3) As every language in NP is reducible to SAT, NP $\subseteq \operatorname{DTIME}\left(n^{k}\right)$.
4) Due to the assumption $\mathbf{P}=\mathbf{N P}, \mathbf{P} \subseteq \operatorname{DTIME}\left(n^{k}\right)$.
5) Then $\mathbf{D T I M E}\left(n^{k}\right) \subsetneq \mathbf{D T I M E}\left(n^{k+1}\right)$ is a contradiction with $\mathbf{P} \subseteq \mathbf{D T I M E}\left(n^{k}\right)$.

Solution: The time needed for calculating the reduction isn't taken into account in step 3.

Consider the following kind of computation:
Starting from a deterministic polynomial-time TM V, we extend V as follows:

- V has two special tapes:
- a query-tape on which it can write Boolean formulae and
- a response-tape.
- At any step of the computation, V can send the formula on the query tape to a Sat-prover that immediately tells V if the formula is satisfiable or not by writing either 1 or 0 to the response-tape.
Let $\mathbf{S A T}[k]$ be the class of all languages L which are decided by deterministic polynomial-time TMs asking at most k SAt-questions (where k may depend on the input length).
(a) The Boolean closure of NP is the class of all languages L of the form:

$$
L:=\bigcup_{i=1}^{m} \bigcap_{j=1}^{n} L_{i, j} \text { where } L_{i, j} \in \mathbf{N P} \cup \operatorname{coNP}
$$

Show that for any such language L there exists a constant k s.t. $L \in \mathbf{S A T}[k]$.
(b) Show that $\operatorname{SAT}[\operatorname{poly}(n)] \subseteq \boldsymbol{\Sigma}_{2}^{p} \cap \boldsymbol{\Pi}_{2}^{p}$.

Remark: SAT[poly(n)] refers to the class of languages decided by deterministic polynomial-time TMs which can query the Sat-prover a number of times polynomial in the length of the input.

Solution:

(a) For a language $A \subseteq \Sigma^{*}$ set $A^{1}:=A$ and $A^{-1}:=\Sigma^{*} \backslash A$. For every language $L_{i j}$ we find an NP-language $A_{i j}$ and a $c_{i j} \in\{1,-1\}$ s.t. $L_{i j}=A_{i j}^{c_{i j}}$. Then

$$
L=\bigcup_{i=1}^{m} \bigcap_{j=1}^{n} A_{i j}^{c_{i j}}
$$

Now let $f_{i j}$ be the poly-time reduction from $A_{i j}$ to SAT and let $a_{i j}(x)$ be the answer by the Sat-solver for the query $f_{i j}(x) \stackrel{?}{\in}$ SAT. We then have:

$$
x \in L \text { iff } \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n} a_{i j}^{c_{i j}}(x)=1 \text { with } a^{1}:=a \text { and } a^{-1}:=1-a
$$

We therefore need to do at most $n \cdot m$ queries to the SAT-solver and then evaluate the n-CNF formula on the valuation given by the answers by the Sat-solver.
(b) Let M be a det. polynomial-time TM which uses at most a polynomial number of queries to the SAT-prover. Let $q(n)$ be the polynomial bounding the number of queries for an input of length n.
We obtain from M the det. polynomial-time TM N which takes the same input as M and additionally a sequence of Boolean formulae $\phi_{1}, \ldots, \phi_{q(n)}$ and also a bit string β of length $q(n)$ where $\beta_{i}=1$ iff ϕ_{i} is satisfiable. Of course, all the formulae ϕ_{i} are of polynomial length (otherwise V wouldn't be able to write them on its query-tape).
On input $\left\langle x, \phi_{1}, \ldots, \phi_{q(n)}, \beta\right\rangle, N$ now simulates M on x until the first query. It then checks that the first query of M is indeed the formula ϕ_{1} and takes β_{1} as the response by the Sat-prover. This way, N simulates M on x without any interaction with the prover. It accepts if M accepts. We now have $x \in L$ iff $\exists \phi_{1}, \ldots, \phi_{q(n)}, \beta_{1}, \ldots, \beta_{q(n)}: N\left(x, \phi_{1}, \ldots, \phi_{q(n)}, \beta_{1}, \ldots, \beta_{q(n)}\right)=1 \wedge \bigwedge_{i=1}^{q(n)} \beta_{i}=1 \Leftrightarrow \phi_{i} \in \operatorname{SAT}$.

Note that

$$
\beta_{i}=1 \Leftrightarrow \phi_{i} \in \mathrm{SAT} \equiv\left(\beta_{i}=0 \Rightarrow \phi_{i} \in \overline{\mathrm{SAT}}\right) \wedge\left(\beta_{i}=1 \Rightarrow \phi_{i} \in \mathrm{SAT}\right)
$$

is a computation in $\mathbf{N P} \cup \mathbf{c o N P}$. The complete computation is therefore in $\boldsymbol{\Sigma}_{2}^{p}$. As $\mathbf{S A T}[\mathrm{k}]$ is closed under complement, we immediately obtain that it is also contained in $\boldsymbol{\Pi}_{2}^{p}$.

