SOLUTION

Complexity Theory – Final Exam

Please note: If not stated otherwise, all answers have to be justified.

Last name:	
First name:	
Student ID no.:	
Signature:	

Remarks

- If you feel ill, let us know immediately.
- Fill in all the required information and don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You have 10 minutes to read the questions and, after that, 120 minutes to write your solutions.
- You are not allowed to use auxiliary means other than your pen.
- You may write your answers in English or German.
- Check if you received 8 sheets of paper.
- Write your solutions directly into the exam booklet. Please ask if you need additional (scrap) paper. Only solutions written on official paper will be corrected.
- You can obtain 40 points. You need 17 points to pass including potential bonuses awarded.
- Don't fill in the table below.
- Good luck!

Ex1	Ex2	Ex3	Ex4	Ex5	Ex6	Ex7	\sum

<u>Exercise 1</u> True/False

Points are awarded as follows:

	unsure \Box	unsure \boxtimes
correct answer	1P	$0.5\mathrm{P}$
wrong answer	-1P	-0.5P
no answer	0P	0P

Remarks

- All claims are definitely either true or false.
- Tick $unsure \square$ in case of doubt to reduce a potential point deduction.
- A negative total implies zero points awarded for this exercise.

	true	false	unsure
PP has complete problems.			
$\bigcup_{k\in\mathbb{N}}\mathbf{IP}[n^k] = \bigcup_{k\in\mathbb{N}}\mathbf{AM}[n^k].$			
If $\mathbf{L} \neq \mathbf{P}$, then \mathbf{L} is closed under \leq_p .		\boxtimes	
Every probabilistic TM running in expected polynomial time decides a language in $\mathbf{ZPP} := \mathbf{RP} \cap \mathbf{coRP}$.			
If graph isomorphism is NP -complete, then $\Sigma_2^p = \Pi_2^p$.			
3SAT has no polynomially-sized, interactive, zero-knowledge proofs.			
For every $L \in \mathbf{IP}$ there is an alternating TM deciding L in polynomial time.			
If every unary language $L \in \mathbf{NP}$ is already in \mathbf{P} , then $\mathbf{EXP} = \mathbf{NEXP}$.			
If $\mathbf{PH} = \mathbf{PSPACE}$, then $\Sigma_k^p \subsetneq \Sigma_{k+1}^p$ for all $k \in \mathbb{N}$.		\boxtimes	
AC = NC.			

Exercise 2 "One-liners"

Give a short answer. For **Claims** state clearly whether they hold or not.

Notation: Let $\mathbf{polyL} := \bigcup_{k \in \mathbb{N}} \mathbf{SPACE}((\log n)^k)$ be the class of languages decidable in poly-logarithmic space.

Claim: $polyL \subsetneq EXP.$

Answer: Yes as $polyL \subseteq PSPACE$ by the space hierarchy theorem.

Question: State Ladner's theorem:

Answer: If $\mathbf{P} \neq \mathbf{NP}$, then there exists a $L \in \mathbf{NP} \setminus \mathbf{P}$ which is not **NP**-complete.

Claim: Probably, $\mathbf{NP} \neq \mathbf{PCP}(1/n \cdot \log n, 1)$ as otherwise ...

Answer: P = NP.

Question: State a coNL-complete problem.

Answer: PATH

Question: By what kind of certificates is **NL** characterized?

Answer: (poly-length) read-once

Question: We know that unless $\mathbf{P} = \mathbf{NP}$ there is some $\rho \in (0, 1]$ s.t. MAX3SAT cannot be ρ -approximated in polynomial time. State a problem for which we know that this holds for every $\rho \in (0, 1]$.

Answer: INDSET

- **Question**: The reduction in the proof by Cook-Levin takes a Turing machine M and an input x and maps it on some CNF formula $\phi_{M;x}$. Let $N_{M;x}$ be the number of certificates u s.t. M(x, u) = 1. How is $N_{M;x}$ related to $\phi_{M;x}$?
- **Answer**: $N_{M;x}$ is the number of satisfying assignments of $\phi_{M;x}$ (at least when restricting assignments to the variables appearing in $\phi_{M;x}$).

Question: State a language in $\mathbf{NC}^2 \setminus \mathbf{AC}^0$ other than PARITY.

Answer: $\overline{\text{PARITY}}$.

Consider the following set \mathcal{C} of complexity classes.

$$\mathcal{C} = \{ \mathbf{NC}^2, \mathbf{L}, \mathbf{IP}, \mathbf{ZPP}, \mathbf{PCP}(\log n, 1), \mathbf{\Sigma}_2^p \cap \mathbf{\Pi}_2^p, \mathbf{BPP}, \mathbf{PH} \}$$

- (a) Draw a directed graph with nodes \mathcal{C} such that there is a path from A to B if $A \subseteq B$.
- (b) The "deterministic space hierarchy theorem" says that for any space-constructible functions f, g with $f(n) \in o(g(n))$ we have

 $\mathbf{SPACE}(f(n)) \subsetneq \mathbf{SPACE}(g(n)).$

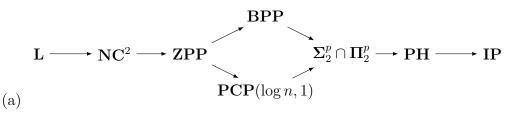
Show that $\mathbf{NL} \subsetneq \mathbf{IP}$.

(c) It is unknown whether $\mathbf{P} = \mathbf{L}$ and whether $\mathbf{P} = \mathbf{PSPACE}$. However, not both equalities can hold at the same time.

Which classes in \mathcal{C} coincide

- i) under the assumption that $\mathbf{P} = \mathbf{L}$?
- ii) under the assumption that $\mathbf{P} = \mathbf{PSPACE}$?

Solution:



- (b) By Savitch's theorem we have $\mathbf{NL} \subseteq \mathbf{SPACE}((\log n)^2)$.
 - By the deterministic space hierarchy theorem, it follows that $\mathbf{SPACE}((\log n)^2) \subsetneq \mathbf{SPACE}(n) \subseteq \mathbf{PSPACE}$.
 - As **IP** equals **PSPACE**, the result follows.
- (c) If **P** equals **L**, then **L** equals also **NC**.
 - If **P** equals **PSPACE**, then the remaining six classes coincide.

Given an undirected graph G = (V, E) we call $C \subseteq V$ a *clique* of G if for any two distinct nodes u, v of C there is an edge $(u, v) \in E$. A clique C is *maximal* if $C \cup \{u\}$ is not a clique for any $u \in V \setminus C$.

Consider the following decision and function problems related to cliques.

- CLIQUE_D := { $\langle G, k \rangle | G$ has a clique of size at least k}.
- EXACTCLIQUE_D := { $\langle G, k \rangle$ | Every maximal clique in G has size exactly k}.
- CLIQUESIZE(G) := max{ |C| | C is a clique of G}.

Remark: You may assume that $CLIQUE_D$ is **NP**-complete.

- (a) Show how to calculate CLIQUESIZE(G) in time $\mathcal{O}(T(n) \cdot \log n)$ under the assumption that $CLIQUE_D$ can be decided in time T(n) for any graph G of size n.
- (b) Recall the definition of **DP**:

$$\mathbf{DP} := \{ L_1 \cap L_2 \mid L_1 \in \mathbf{NP}, L_2 \in \mathbf{coNP} \}.$$

Show that EXACTCLIQUE_D is in **DP**.

(c) You may assume that the following language, $EXACTINDSET_D$, is **DP**-complete:

EXACTINDSET_D := { $\langle G, k \rangle$ | Any independent set of maximal size in G has size exactly k}.

Show that EXACTCLIQUE_D is **DP**-complete.

(d) Show that for no $\rho \in (0, 1]$ there exists a poly-time ρ -approximation of CLIQUESIZE unless $\mathbf{P} = \mathbf{NP}$.

Solution:

- (a) The maximal size of any clique is given by number of nodes of the graph G which is surely bounded by its representation length n := |G|. We use binary search to find the optimal value in the interval [0, n]: the result of a query $\langle G, k \rangle \in \text{CLIQUE}_D$ determines whether to descend into the upper or lower half of the remaining interval. This results in at most $\log n$ calls to CLIQUE_D where every call takes time at most T(n).
- (b) *Remark*: There was an error in the definition of EXACTCLIQUE.
 - D1: The definition should have been

 $\langle G, k \rangle \in \text{EXACTCLIQUE}_D : \Leftrightarrow k = \text{CLIQUESIZE}(G).$

similar to EXACTINDSET.

D2: What we defined instead was:

$$\langle G, k \rangle \in \text{EXACTCLIQUE}_D : \Leftrightarrow \forall C : C \text{ is a maximal clique of } G \Rightarrow |C| = k.$$

Still, for both definitions EXACTCLIQUE_D is in **DP**:

D1: We have

$$\langle G, k \rangle \in \text{EXACTCLIQUE}_D$$
 iff $\langle G, k \rangle \in \text{CLIQUE}_D \land \langle G, k+1 \rangle \notin \text{CLIQUE}_D$

Define now $L := \{ \langle G, k \rangle \mid \langle G, k+1 \rangle \in \text{CLIQUE}_D \}$. L is clearly in **NP**, so its complement is in **coNP**. We then have

$$\text{EXACT}\text{CLIQUE}_D = \text{CLIQUE}_D \cap L \in \mathbf{DP}$$

Remark: Note that is not sufficient to show that EXACTCLIQUE_D is in $\Sigma_2^p \cap \Pi_2^p$ as we only know that $\text{DP} \subseteq \Sigma_2^p \cap \Pi_2^p$.

D2: Obviously, we can decide in polynomial time if a given subset $C \subseteq V$ is a maximal clique and if |C| = k. Hence,

 $\forall C : C \text{ is a maximal clique of } G \Rightarrow |C| = k$

is a calculation in $\Pi_1^p = \mathbf{coNP}$ which is a subset of **DP**.

Solutions relying on any of the two definitions have been accepted.

(c) *Remark*: This exercise makes only sense w.r.t. definition D1. Every student has therefore been awarded 2P.

Given G = (V, E), set $G' := (V, \{(u, v) \in V \times V \mid u \neq v\} \setminus E)$, i.e., two nodes of G' are connected by an edge iff they are not connected by an edge in G. Now, the cliques of G are in bijection with the independent sets of G'. This gives us the following polynomial time reduction:

 $\langle G, k \rangle \in \text{EXACTINDESET}_D$ iff $f(\langle G, k \rangle) := \langle G', k \rangle \in \text{EXACTINDSET}_D$.

(d) *Remark*: This exercise makes only sense w.r.t. definition D1. Every student has therefore been awarded 1P.

This follows immediately from the reduction given in (c) and the fact that INDSET is **NP**-hard to ρ -approximate for any $\rho \in (0, 1]$.

A path $v_0v_1 \dots v_k$ in a <u>directed</u> graph G = (V, E) with nodes V and edges $E \subseteq V \times V$ is a *cycle* if $v_k = v_0$. Define

 $\mathsf{CYCLE} := \{ \langle G, v \rangle \mid \ v \text{ lies on a cycle of } G \ \}.$

Show that CYCLE is **NL**-complete.

Solution:

• CYCLE \in **NL**:

v is in some cycle of G iff there is a path from s to s in G, i.e., CYCLE is log-reducible to PATH via the reduction $f(\langle G, v \rangle) := \langle G, v, v \rangle$. As **NL** is closed under \leq_{\log} the result follows.

• CYCLE is **NL**-hard via PATH \leq_{\log} CYCLE:

Given $\langle G, s, t \rangle$ add a new node c to G which has exactly one outgoing edge (c, s) and one incoming edge (t, c). We can do this in log-space. If there is a path π from s to t in G, then there is now also a cycle $c\pi c$. On the other hand, every cycle ζ which contains c has to start with the edge (c, s) and end with the edge (t, c), i.e., $\zeta = cs\pi tc$ for some path π . We may assume that c does not appear in π by simply taking a cycle ζ of minimal length. Then π is a path from s to t in G.

Explain the error in the following proof of $\mathbf{P} \neq \mathbf{NP}$:

- 1) Suppose $\mathbf{P} = \mathbf{NP}$.
- 2) Then for some $k \in \mathbb{N}$, SAT \in **DTIME** (n^k) .
- 3) As every language in **NP** is reducible to SAT, **NP** \subseteq **DTIME** (n^k) .
- 4) Due to the assumption $\mathbf{P} = \mathbf{NP}, \mathbf{P} \subseteq \mathbf{DTIME}(n^k)$.
- 5) Then $\mathbf{DTIME}(n^k) \subsetneq \mathbf{DTIME}(n^{k+1})$ is a contradiction with $\mathbf{P} \subseteq \mathbf{DTIME}(n^k)$.

Solution: The time needed for calculating the reduction isn't taken into account in step 3.

Consider the following kind of computation:

Starting from a deterministic polynomial-time TM V, we extend V as follows:

- V has two special tapes:
 - a query-tape on which it can write Boolean formulae and
 - a response-tape.
- At any step of the computation, V can send the formula on the query tape to a SAT-prover that immediately tells V if the formula is satisfiable or not by writing either 1 or 0 to the response-tape.

Let $\mathbf{SAT}[k]$ be the class of all languages L which are decided by deterministic polynomial-time TMs asking at most k SAT-questions (where k may depend on the input length).

(a) The Boolean closure of **NP** is the class of all languages L of the form:

$$L := \bigcup_{i=1}^{m} \bigcap_{j=1}^{n} L_{i,j} \text{ where } L_{i,j} \in \mathbf{NP} \cup \mathbf{coNP}$$

Show that for any such language L there exists a constant k s.t. $L \in \mathbf{SAT}[k]$.

(b) Show that $\mathbf{SAT}[\operatorname{poly}(n)] \subseteq \Sigma_2^p \cap \Pi_2^p$.

Remark: **SAT**[poly(n)] refers to the class of languages decided by deterministic polynomial-time TMs which can query the SAT-prover a number of times polynomial in the length of the input.

Solution:

(a) For a language $A \subseteq \Sigma^*$ set $A^1 := A$ and $A^{-1} := \Sigma^* \setminus A$. For every language L_{ij} we find an **NP**-language A_{ij} and a $c_{ij} \in \{1, -1\}$ s.t. $L_{ij} = A_{ij}^{c_{ij}}$. Then

$$L = \bigcup_{i=1}^{m} \bigcap_{j=1}^{n} A_{ij}^{c_{ij}}.$$

Now let f_{ij} be the poly-time reduction from A_{ij} to SAT and let $a_{ij}(x)$ be the answer by the SAT-solver for the query $f_{ij}(x) \stackrel{?}{\in}$ SAT. We then have:

$$x \in L$$
 iff $\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n} a_{ij}^{c_{ij}}(x) = 1$ with $a^1 := a$ and $a^{-1} := 1 - a$.

We therefore need to do at most $n \cdot m$ queries to the SAT-solver and then evaluate the *n*-CNF formula on the valuation given by the answers by the SAT-solver.

(b) Let M be a det. polynomial-time TM which uses at most a polynomial number of queries to the SAT-prover. Let q(n) be the polynomial bounding the number of queries for an input of length n.

We obtain from M the det. polynomial-time TM N which takes the same input as M and additionally a sequence of Boolean formulae $\phi_1, \ldots, \phi_{q(n)}$ and also a bit string β of length q(n) where $\beta_i = 1$ iff ϕ_i is satisfiable. Of course, all the formulae ϕ_i are of polynomial length (otherwise V wouldn't be able to write them on its query-tape).

On input $\langle x, \phi_1, \ldots, \phi_{q(n)}, \beta \rangle$, N now simulates M on x until the first query. It then checks that the first query of M is indeed the formula ϕ_1 and takes β_1 as the response by the SAT-prover. This way, N simulates M on x without any interaction with the prover. It accepts if M accepts. We now have

$$x \in L$$
 iff $\exists \phi_1, \dots, \phi_{q(n)}, \beta_1, \dots, \beta_{q(n)} : N(x, \phi_1, \dots, \phi_{q(n)}, \beta_1, \dots, \beta_{q(n)}) = 1 \land \bigwedge_{i=1}^{q(n)} \beta_i = 1 \Leftrightarrow \phi_i \in SAT.$

Note that

$$\beta_i = 1 \Leftrightarrow \phi_i \in \text{SAT} \equiv (\beta_i = 0 \Rightarrow \phi_i \in \overline{\text{SAT}}) \land (\beta_i = 1 \Rightarrow \phi_i \in \text{SAT})$$

is a computation in $\mathbf{NP} \cup \mathbf{coNP}$. The complete computation is therefore in Σ_2^p . As $\mathbf{SAT}[\mathbf{k}]$ is closed under complement, we immediately obtain that it is also contained in Π_2^p .