## Complexity Theory - Homework 11

Discussed on 21.07.2010.
Definition 1. A language $L$ is in $\mathbf{P} /$ poly if there exist a family $\left\{C_{n}\right\}$ of Boolean circuits of size polynomial in $n$ such that for all $x \in\{0,1\}^{n}$

$$
x \in L \text { iff } C_{n}(x)=1
$$

A family of Boolean circuits $\left\{C_{n} \mid n \in \mathbb{N}\right\}$ is logspace uniform if there is a deterministic Turing machine $M$ running in logarithmic space which on input $1^{n}$ outputs a description of $C_{n}$. Similarly for polytime unifrom we require $M$ run in polynomial time.
(Note that the definition of NC requires the logspace uniformity together with polynomial size and polylog depth.)

## Exercise 11.1

Show that $\mathbf{B P P} \subseteq \mathbf{P}_{/ \text {poly }}$.
Remark: Use one of the results on BPP which have already been shown in the lecture.

## Exercise 11.2

(a) Show that for every polynomial $p$ the following language is in coNP: $L_{p}:=\left\{\left\langle C_{1}, C_{2}, \ldots, C_{n}\right\rangle \mid C_{i}\right.$ is a circuit of size at most $p(i)$ which decides Sat for every formula of length exactly $\left.i\right\}$.

Remark: Assume w.l.o.g. that every formula has length at least one with 0 (false) and 1 (true) the two formulae of length 1 . Now, use the circuits $C_{1}, \ldots, C_{i}(i \geq 0)$ to check the correctness of circuit $C_{i+1}$. (Recall the so-called self-reducibility of SAT.)
(b) Show that $\mathbf{P H}$ collapses to the second level if $\mathbf{N P} \subseteq \mathbf{P}_{/ \text {poly }}$, i.e. if there is a sequnce of polynomial sized circuits for SAT.

Remark: It suffices to show that $\Pi_{2}$ SAT $\in \boldsymbol{\Sigma}_{2}^{p}$.
(c) What happens if there is a sequnce of polynomial sized circuits for SAT that is moreover logspace uniform? What if it is polytime uniform?

## Exercise 11.3

Prove that for $n \geq 100$, most of the boolean functions on $n$ variables require circuits of size at least $2^{n} / n$.

## Exercise 11.4

(a) Design a circuit family for the parity problem and describe it formally. Prove that there is a logspace uniform one.
(b) Let $A[0 . . n]$ be an array of integers. Design a PRAM for summing numbers in an array, i.e. compute $\sum_{i=0}^{n} A[i]$. Can you compute the array-suffix-sum, i.e. $\sum_{i=j}^{n} A[i]$ for all $0 \leq j \leq n$, with the same complexity?

