Complexity Theory – Homework 10

Discussed on 06.07.2010.

Exercise 10.1

Show that, if SAT $\in \mathbf{PCP}(r(n), 1)$ for some $r(n) = o(\log n)$, then $\mathbf{P} = \mathbf{NP}$.

Exercise 10.2

Prove that QUADEQ is **NP**-complete.

Exercise 10.3

Consider the following problem:

- **Input**: A matrix $A \in \mathbb{Q}^{m \times n}$, a vector $b \in \mathbb{Q}^m$.
- **Target**: Determine the maximal number of equations in Ax = b which can simultaneously be satisfied by some $x \in Q^n$.

Show that there is a constant $\rho < 1$ such that approximating the maximal size is **NP**-hard.

Exercise 10.4

We consider the optimization variant of the KNAPSACKPROBLEM:

- **Input**: Values v_1, \ldots, v_n , weights w_1, \ldots, w_n and a weight bound W, all natural numbers representable by n bits.
- **Target**: Compute the maximal total value attainable by any selection S of total weight at most W, i.e.,

$$\max\{\sum_{i\in S} v_i \mid S \subseteq \{1, 2, \dots, n\} \land \sum_{i\in S} w_i \le W\}.$$

(a) In Exercise 3.2(c) we have discussed a pseudo-polynomial algorithm which solves this problem in time $\mathcal{O}(nW)$. Similarly, design an algorithm which finds the maximal total value by computing an array A with

$$A[j,v] = \min\{W+1, \sum_{i \in S} w_i \mid S \subseteq \{1, 2, \dots, j\} \land \sum_{i \in S} v_i = v\}$$

Your algorithm should be polynomial in n and $V := \sum_{i=1}^{n} v_i$.

(b) Assume you replace all values v_i by $v'_i := \lfloor v_i/2^k \rfloor$ for some fixed $k \ge 0$, i.e., you remove the k least significant bits. The weights w_i and the weight limit W stay unchanged. Let v_{opt} , resp. v'_{opt} be the optimal value for the original resp. reduced instance.

We take $v'_{opt} \cdot 2^k$ as an approximation for v_{opt} .

- Show that $v_{\text{opt}} \ge v'_{\text{opt}} 2^k$. What is the approximation error in the worst case?
- Choose k s.t. the approximation error is at most $\epsilon > 0$. Show that for this k the algorithm runs in time polynomial in n and $1/\epsilon$.