## Complexity Theory - Homework 10

Discussed on 06.07.2010.

## Exercise 10.1

Show that, if SAT $\in \mathbf{P C P}(r(n), 1)$ for some $r(n)=o(\log n)$, then $\mathbf{P}=\mathbf{N P}$.

## Exercise 10.2

Prove that Quadeq is NP-complete.

## Exercise 10.3

Consider the following problem:
Input: $\quad$ A matrix $A \in \mathbb{Q}^{m \times n}$, a vector $b \in \mathbb{Q}^{m}$.
Target: Determine the maximal number of equations in $A x=b$ which can simultaneously be satisfied by some $x \in Q^{n}$.

Show that there is a constant $\rho<1$ such that approximating the maximal size is NP-hard.

## Exercise 10.4

We consider the optimization variant of the KnapsackProblem:
Input: Values $v_{1}, \ldots, v_{n}$, weights $w_{1}, \ldots, w_{n}$ and a weight bound $W$, all natural numbers representable by $n$ bits.
Target: Compute the maximal total value attainable by any selection $S$ of total weight at most $W$, i.e.,

$$
\max \left\{\sum_{i \in S} v_{i} \mid S \subseteq\{1,2, \ldots, n\} \wedge \sum_{i \in S} w_{i} \leq W\right\}
$$

(a) In Exercise 3.2(c) we have discussed a pseudo-polynomial algorithm which solves this problem in time $\mathcal{O}(n W)$. Similarly, design an algorithm which finds the maximal total value by computing an array $A$ with

$$
A[j, v]=\min \left\{W+1, \sum_{i \in S} w_{i} \mid S \subseteq\{1,2, \ldots, j\} \wedge \sum_{i \in S} v_{i}=v\right\}
$$

Your algorithm should be polynomial in $n$ and $V:=\sum_{i=1}^{n} v_{i}$.
(b) Assume you replace all values $v_{i}$ by $v_{i}^{\prime}:=\left\lfloor v_{i} / 2^{k}\right\rfloor$ for some fixed $k \geq 0$, i.e., you remove the $k$ least significant bits. The weights $w_{i}$ and the weight limit $W$ stay unchanged. Let $v_{\mathrm{opt}}$, resp. $v_{\mathrm{opt}}^{\prime}$ be the optimal value for the original resp. reduced instance.
We take $v_{\mathrm{opt}}^{\prime} \cdot 2^{k}$ as an approximation for $v_{\mathrm{opt}}$.

- Show that $v_{\text {opt }} \geq v_{\text {opt }}^{\prime} 2^{k}$. What is the approximation error in the worst case?
- Choose $k$ s.t. the approximation error is at most $\epsilon>0$. Show that for this $k$ the algorithm runs in time polynomial in $n$ and $1 / \epsilon$.

