Complexity Theory - Homework 9

Discussed on 30.06.2010.

Exercise 9.1

Given an undirected graph $G=(V, E)$ we call $C \subseteq V$ a (vertex) cover of G if

$$
\forall(u, v) \in E: u \in C \vee v \in C
$$

In the following, we want to study the relation between several decision and function problems related to vertex cover. These are:

- $\mathrm{VC}_{D}:=\{\langle G, k\rangle \mid G$ has a vertex cover of size at most $k\}$.
- $\operatorname{MinVC}_{D}:=\{\langle G, k\rangle \mid G$ has a minimal vertex cover of size exactly $k\}$.
- MinSolVC $D_{D}:=\{\langle G, C\rangle \mid C$ is a minimal vertex cover of $G\}$.
- Calculate the minimal size $\operatorname{minVC}(G)$ of a vertex cover of G.
- Calculate a minimal vertex cover $\operatorname{MinVC}(G)$ of G.

Show:
(a) MinSolVC $D_{D} \leq_{p} \operatorname{MinVC}_{D}$.
(b) $\operatorname{MinSolVC}_{D} \leq_{p} \overline{\mathrm{VC}}_{D}$ (see Ex. 4.1).
(c) MinVC_{D} is DP-complete (see Ex. 6.3).
(d) $\mathrm{VC}_{D} \leq_{p} \mathrm{MinVC}_{D}$ and $\overline{\mathrm{VC}}_{D} \leq_{p} \operatorname{MinVC}_{D}$.

Remark: You only have to show that such reductions exist.
(e) Assume that $\operatorname{minVC}(G)$ can be calculated in time $T(|G|)$. Give bounds on the time needed to decide MinVC_{D} and MinSolVC D_{D}, resp. calculate $\operatorname{MinVC}(G)$. In particular, show that, if $T(n)$ is polynomial, then so are the other bounds.
(f) Analogously to (e), give time bounds on the considered problems assuming that $\langle G, k\rangle \in \operatorname{MinVC} D$ (resp. $\langle G, k\rangle \in \mathrm{VC}_{D}$) can be decided in time $T(|G|)$.
(g) If $\mathrm{MinVC}_{D} \leq_{p} \operatorname{MinSolVC}_{D}$, then $\mathbf{P H} \subseteq \boldsymbol{\Sigma}_{1}^{p}$.

Exercise 9.2

Let $\Phi=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ be a set of m Boolean expressions in the variables x_{1}, \ldots, x_{n} with the restriction that every expression involves at most 3 of these n variables.

Assume we choose a truth assignment u uniformly at random from $\{0,1\}^{n}$. Denote then by $\operatorname{Pr}\left[\phi_{i}\right]$ the probability that u satisfies ϕ_{i}.
(a) Show that $\operatorname{Pr}\left[\phi_{i}\right]$ can be calculated in time polynomial in the length of ϕ_{i}.
(b) Let N be the random variable which counts the number of expressions ϕ_{i} satisfied by the random assignment u. Show that

$$
\mathbb{E}[N]=\sum_{i=1}^{m} \operatorname{Pr}\left[\phi_{i}\right]
$$

(c) We write $\mathbb{E}\left[N \mid u_{1}=0\right]$ for the expected number of expressions satisfied by a random assignment u which assigns 0 to x_{1}. Similarly, define $\mathbb{E}\left[N \mid u_{1}=1\right]$. Show:

$$
\mathbb{E}[N]=\frac{1}{2} \cdot\left(\mathbb{E}\left[N \mid u_{1}=0\right]+\mathbb{E}\left[N \mid u_{1}=1\right]\right)
$$

(d) Show that there is always a value b s.t. $\mathbb{E}\left[N \mid u_{1}=b\right] \geq \mathbb{E}[N]$.
(e) Give now a polynomial-time algorithms which computes an assignment which satisfies at least $\mathbb{E}[N]$ expressions of Φ.

Exercise 9.3

The decision version of the traveling salesman problem (short TSP) is defined as follows:
Given distances $d_{i j} \geq 0$ between n cities and a bound $B \geq 0$, decide if there is a tour of the cities of length at most B.

We denote the corresponding decision problem by TSP_{D}, i.e.,

$$
\left\langle d_{1,1}, \ldots, d_{n, n}, B\right\rangle \in \operatorname{TSP}_{D} \text { iff there is TSP-tour w.r.t. }\left(d_{i j}\right) \text { of length at most } B .
$$

A Hamilton path in an undirected graph $G=(V, E)$ is a path in G which visits every node exactly once. The corresponding decision problem HamiltonPath D_{D} is known to be NP-complete.
(a) Show that the following is polynomial-time reduction from HP_{D} to TSP_{D} :

Given $G=(V, E)$ with $n=|V|$ and assume that $V=\{1,2, \ldots, n\}$. Set $d_{i, j}:=1$ if the nodes i and j are connected by some edge, otherwise $d_{i, j}:=n+1$. Further, set $B:=2 n$.
(b) We call a TSP-instance $\left\langle d_{1,1}, \ldots, d_{n, n}, B\right\rangle$ metric if $d_{i j} \leq d_{i k}+d_{k j}$ holds for all i, j, k.

- Give an example of a graph G where the TSP-instance produced by the reduction above is not metric.
- Modify the reduction such that it always yields a metric TSP-instance.
(c) The following algorithm for approximating the optimal solution of a metric TSP is by Christofides:

First, compute a minimal spanning tree $T=\left(V_{T}, E_{T}\right)$ of the complete graph K_{n} with distance matrix $\left(d_{i j}\right)$. Let O be the nodes of T which have odd degree (w.r.t. T !). Consider now the complete graph K_{O} consisting only of these nodes O, and calculate a minimal matching M for it, i.e., find a subset M of the edges of K_{O} s.t. every node is connected to exactly one other node (no loops) and the total weight of M, i.e., $\sum_{(i, j) \in M} d_{i j}$, is minimal. Add now the edges M to T yielding a multigraph G, i.e., assume that the original edges of T are colored black, while those of M are colored red. Still, the weight of an edge (i, j) in G is $d_{i j}$ independent of its color. Calculate a Eulerian walk of G, i.e., a path of G which uses every edge, both black and red, of G exactly once. The approximation is then the tour embedded in the Eulerian walk.

- Convince yourself that every step of the algorithm by Christofides can be implemented in polynomial time (look it up on the Internet).
- Apply both the algorithm shown in class and the algorithm by Christofides to the following example:

The coordinates of the inner nodes are $R \cdot\left(\cos \frac{k \cdot 2 \pi}{n}, \sin \frac{k \cdot 2 \pi}{n}\right)$, for the outer nodes $(R+c) \cdot\left(\cos \frac{k \cdot 2 \pi}{n}, \sin \frac{k \cdot 2 \pi}{n}\right)$ where $n=6, k=1,2, \ldots, 6, R=2 c m, c=0.5 \mathrm{~cm}$. Distances are given by the Euclidean norm if there is an edge, otherwise ∞.

- Try to show that Christofides' algorithm always yields a tour which is at most 50% longer than the optimal tour for a metric TSP-instance.

