Complexity Theory - Homework 8

Discussed on 23.06.2010.

Exercise 8.1

Give an interactive proof protocol for graph isomorphism and show that your protocol satisfies the completeness and soundness requirements.
Can you give a zero-knowledge one, too?

Exercise 8.2

Let p be a prime number. An integer a is then a quadratic residue modulo p if there is some integer b s.t. $a \equiv b^{2}(\bmod p)$.
(a) Show that $\mathrm{QR}:=\left\{(a, p) \in \mathbb{Z}^{2} \mid a\right.$ is a quadratic residue modulo $\left.p\right\}$ is in NP.
(b) Set QNR $:=\left\{(a, p) \in \mathbb{Z}^{2} \mid a\right.$ is not a quadratic residue modulo $\left.p\right\}$.

Complete the following sketch to an interactive proof protocol for QNR and show its completeness and soundness:
i) Input: integer a and prime p.
ii) The verifier chooses $r \in\{0,1, \ldots, p-1\}$ and $b \in\{0,1\}$ uniformly at random, keeping both secret.
i. If $b=0$, the verifier sends $r^{2} \bmod p$ to the prover.
ii. If $b=1$, the verifier sends $a r^{2} \bmod p$ to the prover.
iii) ...

Exercise 8.3

Show that perfect soundness collapses the class IP to NP, where perfect soundness means soundness with error probability 0.

Exercise 8.4

A probabilistic alternating Turing machine (short: PATM) is a tuple $\left(Q_{\frac{1}{2}}, Q_{\exists}, \Gamma, \delta_{0}, \delta_{1}\right)$ where

- $Q:=Q_{\frac{1}{2}} \cup Q_{\exists}$ is the set of control states. ($Q_{\frac{1}{2}}$ and Q_{\exists} are required to be disjoint.)
- Γ is the alphabet.
- δ_{0}, δ_{1} are two transition functions.

A run of a PATM $M=\left(Q_{\frac{1}{2}}, Q_{\exists}, \Gamma, \delta_{0}, \delta_{1}\right)$ on a given input x is simply a run by the underlying NDTM defined by $\left(Q_{\frac{1}{2}} \cup Q_{\exists}, \Gamma, \delta_{0}, \delta_{1}\right)$. In particular, M runs in time $T(n)$ if every run on input x takes time at most $T(|x|)$, i.e., the computation tree of M on input x has height at most $T(|x|)$. (Recall the inductive definition of configuration tree: starting from the initial configuration on input x (the root), every inner node of the tree is a non-halting configuration c of M which has exactly two childrens $\delta_{0}(c)$ and $\delta_{1}(c)$, even if $\delta_{0}(c)=\delta_{1}(c)$.)
The intuition of a PATM is that it combines randomization with nondeterminism: in a configuration with a control state contained in Q_{\exists} a PATM basically explores both possible successors in parallel, while in a configuration with control state in $Q_{\frac{1}{2}}$ it chooses on of the two possible successors uniformly at random. More formally, the probability that M accepts x $(\operatorname{Pr}[M(x)=1])$ is then defined by labeling the computation tree bottom-up as follows:

- A leaf is labeled by 1 if it corresponds to a accepting configuration, otherwise it is labeled by 0 .
- An inner node which corresponds to a control state from $Q_{\frac{1}{2}}$ is labeled by the average of the labels of its two children;
- while an inner node corresponding to a control state from Q_{\exists} is labeled by the maximum of its two children.

The label of the root of the computation tree of M on input x is then the probability that M accepts $x, \operatorname{short} \operatorname{Pr}[M(x)=1]$. Similarly, $\operatorname{Pr}[M(x)=0]:=1-\operatorname{Pr}[M(x)=1]$.
(a) Show that for every poly-time PATM M there is a poly-time PATM N s.t.:

- $\operatorname{Pr}[M(x)=1]=\operatorname{Pr}[N(x)=1]$ for all $x \in\{0,1\}^{*}$.
- Every run of N on a given input x takes time exactly $2|x|^{k}$ for some $k>0$.
- Every inner node with control state in $Q_{\frac{1}{2}}\left(Q_{\exists}\right)$ has only children with control state in $Q_{\exists}\left(Q_{\frac{1}{2}}\right)$.
(b) Let $M=\left(Q_{\exists}, Q_{\forall}, \Gamma, \delta_{0}, \delta_{1}\right)$ be a poly-time ATM deciding the language L. We can reinterpret M also a PATM by setting $Q_{\frac{1}{2}}:=Q_{\forall}$. Show that

$$
x \in L \Leftrightarrow \operatorname{Pr}[M(x)=1]=1 .
$$

(c) The class APP is defined as follows:

A language L is contained in APP if there is a poly-time PATM M s.t.

$$
x \in L \Leftrightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 .
$$

- Show that APP \subseteq PSPACE by adapting the PSPACE-algorithm for deciding QSAt.
- Show that $\mathbf{P S P A C E} \subseteq \mathbf{A P P}$ by adapting the proof of $\mathbf{N P} \subseteq \mathbf{P P}$ given in the lecture.

Hint: Recall that $\mathbf{A P}=\mathbf{P S P A C E}$, i.e., for every $L \in \mathbf{P S P A C E}$ there is a poly-time alternating Turing machine deciding L. Now copy the construction from the proof of $\mathbf{N P} \subseteq \mathbf{P P}$ in order to obtain from a poly-time ATM a poly-time PATM M with $x \in L \Leftrightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4$.
(d) The class ABPP is defined as follows:

A language L is contained in $\mathbf{A B P P}$ if there is a poly-time PATM M s.t.

$$
x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq 3 / 4 \text { and } x \notin L \Rightarrow \operatorname{Pr}[M(x)=1] \leq 1 / 4
$$

Obviously, we have $\mathbf{A B P P} \subseteq \mathbf{A P P}$.

- Show that $\mathbf{A B P P}=\mathbf{I P}=\mathbf{A P P}=\mathbf{P S P A C E}$.

Hint: You already know ABPP from the lecture by some other name.
(e) Assume we extend the definition of PATMs by partitioning the control states into three classes $Q_{\frac{1}{2}}, Q_{\exists}, Q_{\forall}$; the acceptance probability $\operatorname{Pr}[M(x)=1]$ is defined as above where the value of a node corresponding to a control state of Q_{\forall} is defined to be the minimum of the values of its two children. Call such a Turing machine a PAATM.

- Using PAATMs define the complexity classes AAPP and AABPP analogously to APP and ABPP.

Discuss how these relate to APP, PP, ABPP, BPP, AP, PSPACE, IP, AM.

