Complexity Theory - Homework 7

Discussed on 09.06.2010.

Exercise 7.1

(a) Show that RP does not change if we replace in the definition $\geq 3 / 4$ by $\geq n^{-k}$ or $\geq 1-2^{-n^{k}}$ (with $k>0$).
(b) Let $L \in \mathbf{N P}$ be decided by a poly-time TM $M(x, u)$ with certificates u of length $p(|x|)$.

Prove or disprove that $x \in L \Rightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq n^{-k}$ needs to hold for some $k>0$ if a polynomial number $r(|x|)$ of reruns should suffice to reduce the probability of false negatives below any given bound $c \in(0,1)$.

Remark: Use that $(1-1 / k)^{k} \approx e^{-1}$ for large k.

Exercise 7.2

Show that, if $\mathbf{N P} \subseteq \mathbf{B P P}$, then $\mathbf{R P}=\mathbf{N P}$.

Exercise 7.3

Show that $L \in \mathbf{Z P P}$ if and only if L is decided by some PTM in expected polynomial time.

Exercise 7.4

Show that
(a) RP, BPP , and $\mathbf{P P}$ are closed under \leq_{p}.

Remark: Recall that a class \mathbf{C} is closed under \leq_{p} if $A \leq_{p} B \wedge B \in \mathbf{C} \Rightarrow A \in \mathbf{C}$.
(b) $\mathbf{R P}$ and $\mathbf{B P P}$ are closed under intersection and union.

Exercise 7.5

For a given $c>0$ let a language L be in $\mathbf{P P}_{\geq c}$ if $x \in L \Leftrightarrow \operatorname{Pr}\left[A_{M, x}\right] \geq c$. Similarly, the class $\mathbf{P} \mathbf{P}_{>c}$ is defined.
Show that
(a) $\mathbf{P} \mathbf{P}_{>1 / 2}=\mathbf{P} \mathbf{P}_{\geq 1 / 2}$.
(b) $\mathbf{P P}_{>1 / 2}$ is closed under complement and symmetric difference.

Remark: The symmetric difference $A \Delta B$ of two sets A, B is defined by $A \Delta B:=(A \backslash B) \cup(B \backslash A)$.
(c) MajSAt is $\mathbf{P} \mathbf{P}_{>1 / 2}$-complete.

Remark: MAJSat is the following problem: Given a Boolean expression with n variables, is it true that the majority of the 2^{n} truth assignments to its variables, i.e., at least $2^{n-1}+1$ of them, satisfy it?
*(d) $\mathbf{P P}=\mathbf{P} \mathbf{P}_{\geq 1 / 2}$.
Remark: Recall that we defined $\mathbf{P P}:=\mathbf{P} \mathbf{P}_{\geq 3 / 4}$.

