Complexity Theory – Homework 6

Discussed on 02.06.2010.

Exercise 6.1

You have seen in the lecture the characterisation of **NL** using log-space TMs which besides the input x have also access to a certificate u of length polynomial in |x| with the restriction that u must be read from left to right (read-once).

(a) Assume we relax the read-once restriction to: between reading u_i and u_{i+1} at most the bits $u_{i-k \log(|x|)} \dots u_i$ can be read (for some fixed $k \in \mathbb{N}$).

Does this make the TM more powerful?

(b) Assume now that we drop the read-once restriction completely.

Show that then 3SAT can be decided.

Conclusion: One can show that both the Cook-Levin-reduction and the reduction of SAT to 3SAT works also in log-space. Without the read-once restriction we therefore move from NL to NP.

Exercise 6.2

Under the assumption that $3SAT \leq_p \overline{3SAT}$ show that NP = PH.

Exercise 6.3

The class **DP** is defined as follows:

$$\mathbf{DP} := \{ L_1 \cap L_2 \mid L_1 \in \mathbf{NP}, L_2 \in \mathrm{coNP} \}.$$

Show that:

(a) EXACT INDSET $\in \mathbf{DP}$.

Reminder: EXACT INDSET := { $\langle G, k \rangle$ | the largest independent set of G has size exactly k}.

- (b) $\mathbf{NP} \cup \mathbf{coNP} \subseteq \mathbf{DP} \subseteq \boldsymbol{\Sigma}_2^p \cap \boldsymbol{\Pi}_2^p$.
- (c) The following language is **DP**-complete w.r.t. \leq_p :

3SAT-3UNSAT := { $(\phi, \psi) \mid \phi, \psi$ are 3CNF-formula with ϕ satisfiable, ψ unsatisfiable }.

*(d) 3SAT-3UNSAT \leq_p EXACT INDSET.

Remark: Let $f(\phi) = (G_{\phi}, m_{\phi})$ be the poly-time reduction from 3SAT to INDSET. Check that m_{ϕ} is both the number of clauses of ϕ and the least upper bound on the size of any independent set in G_{ϕ} by definition of f.