Complexity Theory - Homework 5

Discussed on 26.05.2010.

Exercise 5.1

A two-person game consists of a directed graph $G=\left(V_{0}, V_{1}, E\right)$ (called the game graph) whose nodes $V:=V_{0} \cup V_{1}$ are partitioned into two sets and a winning condition. We assume that every node $v \in V$ has a successor. The two players are called for simplicity player 0 and player 1 . A play of the two is any finite or infinite path $v_{1} v_{2} \ldots$ in G where v_{1} is the starting node. If the play is currently in node v_{i} and $v_{i} \in V_{0}$, then we assume that it is the turn of player 0 to choose v_{i+1} from the successors of v_{i}; if $v_{i} \in V_{1}$, player 1 determines the next move. The winning condition defines when a play is won by player 0. E.g.:

- In a reachability game the winning condition is simply defined by a subset $T \subseteq V_{0} \cup V_{1}$ (targets) of the nodes of G, and a play is won by player 0 if it visits T within $n-1$ moves (where n is the total number of nodes of G). Hence, player 1 wins a play if he can avoid visiting T for at least $n-1$ moves.
- In a revisiting game player 0 wins a play $v_{1} v_{2} \ldots$ if the first node v_{i} which is visited a second time belongs to player 0 , i.e., $v_{i} \in V_{0}$; otherwise player 1 wins the play.

We say that player i wins node s if he can choose his moves in such a way that he wins any play starting in s.
Example: Consider the following game graph where nodes of $V_{0}\left(V_{1}\right)$ are of circular (rectangular) shape:

In the reachability game with $T=\{5\}$ player 0 can win node 4 : if player 1 moves from 4 to 5 , player 0 immediately wins; if player 1 moves from 4 to 2 , then player 0 can win again by moving from 2 to 5 . On the other hand, player 1 can win node 0 by choosing to always play from 0 to 1 and from 3 to 1 .

In the revisiting game played on the same game graph, player 0 can win node 2 : he moves from 2 to 5 and then on to 4 ; no matter how player 1 then chooses to move, the play will end in an already visited node which belongs to player 0. Player 1 can e.g. win node 3 by simply moving to node 1 .
(a) Consider a reachability game:

Show that one can decide in time polynomial in $\langle G, s, T\rangle$ if player 0 can win node s.
Hint: Starting in T compute the set of nodes from which player 0 can always reach T no matter how player 1 chooses his moves.
(b) Consider a revisiting game:

Show that it is PSPACE-complete to decide for a given game graph G and node s if player 0 can win s.

Remarks:

- A game is called determined if every node if won by one of the two players.

Are reachability, resp. revisiting games determined?

- Assume that we change the definition of reachability game by dropping the restriction on the number of moves, i.e., player 0 wins a play if the play eventually reaches a state in T.

Does this change the nodes player 0 can win for a given game graph?

Exercise 5.2

An alternating Turing machine (ATM) $M=\left(\Gamma, Q_{\forall}, Q_{\exists}, \delta_{0}, \delta_{1}\right)$ is an $\operatorname{NDTM}\left(\Gamma, Q_{\forall} \cup Q_{\exists}, \delta_{0}, \delta_{1}\right)$ except that (i) the control states are partitioned into sets Q_{\forall} and Q_{\exists} and (ii) the acceptance condition is defined as follows:

Consider the configuration graph $G(M, x)$. We extend the partition of the control states to the configurations (nodes) of $G_{M ; x}$: a configuration is in V_{0} if its control state is in Q_{\exists}; otherwise it is in V_{1}. We then can consider the reachability game played on $G(M, x)$ by the players 0 and 1 where the target set is the set of accepting configurations. M accepts x iff player 0 wins the initial configuration in this reachability game. (For the sake of completeness, assume that every halting/accepting configuration is its unique successor.)
Example: Consider the following configuration graphs where accepting configurations have a second circle/rectangle drawn around them. In the left graph the corresponding ATM accepts the input while it rejects the input in the right example:

A language is decided by an ATM M if M accepts every $x \in L$ and rejects any $x \notin L$. The time and space required by an ATM is the time and space required by the underlying NDTM.

The class AP consists of all languages L which are decided by an ATM M running in time $T(n) \in \mathcal{O}\left(n^{k}\right)$ for some $k \geq 1$.
(a) An existential (universal) ATM is an ATM with $Q_{\forall}=\emptyset\left(Q_{\exists}=\emptyset\right)$.

Show that any language $L \in \mathbf{A P}$ which is decided by an existential (universal) ATM is in NP (coNP).
(b) Define coAP as usual: $L \in \operatorname{coAP}$ iff $\bar{L} \in \mathbf{A P}$.

Show or disprove that $\mathbf{A P}=\operatorname{coAP}$.
(c) Show that QBF is in AP.
(d) Show that any $L \in \mathbf{A P}$ is in PSPACE.

Remark: Adapt the recursive decision procedure for $\mathrm{QBF} \in \mathbf{P S P A C E}$ you have seen in the lecture.

Exercise 5.3

(a) Show that for any $L \in$ PSPACE there is single-tape TM M (which may also write on its input tape) which decides L also in polynomial space.
(b) Show that it is PSPACE-complete to decide if a given word w can be derived by a given context-sensitive grammar G, i.e.,

$$
\text { ConSens }:=\{\langle G, w\rangle \mid \text { if } G \text { is a context-sensitive grammar and } w \in L(G)\} .
$$

