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Complexity Theory – Homework 5

Discussed on 26.05.2010.

Exercise 5.1

A two-person game consists of a directed graph G = (V0, V1, E) (called the game graph) whose nodes V := V0 ∪ V1 are
partitioned into two sets and a winning condition. We assume that every node v ∈ V has a successor. The two players are
called for simplicity player 0 and player 1. A play of the two is any finite or infinite path v1v2 . . . in G where v1 is the starting
node. If the play is currently in node vi and vi ∈ V0, then we assume that it is the turn of player 0 to choose vi+1 from
the successors of vi; if vi ∈ V1, player 1 determines the next move. The winning condition defines when a play is won by
player 0. E.g.:

• In a reachability game the winning condition is simply defined by a subset T ⊆ V0 ∪ V1 (targets) of the nodes of G,
and a play is won by player 0 if it visits T within n − 1 moves (where n is the total number of nodes of G). Hence,
player 1 wins a play if he can avoid visiting T for at least n− 1 moves.

• In a revisiting game player 0 wins a play v1v2 . . . if the first node vi which is visited a second time belongs to player 0,
i.e., vi ∈ V0; otherwise player 1 wins the play.

We say that player i wins node s if he can choose his moves in such a way that he wins any play starting in s.

Example : Consider the following game graph where nodes of V0 (V1) are of circular (rectangular) shape:
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In the reachability game with T = {5} player 0 can win node 4: if player 1 moves from 4 to 5, player 0 immediately wins; if
player 1 moves from 4 to 2, then player 0 can win again by moving from 2 to 5. On the other hand, player 1 can win node
0 by choosing to always play from 0 to 1 and from 3 to 1.

In the revisiting game played on the same game graph, player 0 can win node 2: he moves from 2 to 5 and then on to 4; no
matter how player 1 then chooses to move, the play will end in an already visited node which belongs to player 0. Player 1
can e.g. win node 3 by simply moving to node 1.

(a) Consider a reachability game:

Show that one can decide in time polynomial in 〈G, s, T 〉 if player 0 can win node s.

Hint : Starting in T compute the set of nodes from which player 0 can always reach T no matter how player 1 chooses
his moves.

(b) Consider a revisiting game:

Show that it is PSPACE-complete to decide for a given game graph G and node s if player 0 can win s.

Remarks :

• A game is called determined if every node if won by one of the two players.

Are reachability, resp. revisiting games determined?

• Assume that we change the definition of reachability game by dropping the restriction on the number of moves, i.e.,
player 0 wins a play if the play eventually reaches a state in T .

Does this change the nodes player 0 can win for a given game graph?



Exercise 5.2

An alternating Turing machine (ATM) M = (Γ, Q∀, Q∃, δ0, δ1) is an NDTM (Γ, Q∀ ∪Q∃, δ0, δ1) except that (i) the control
states are partitioned into sets Q∀ and Q∃ and (ii) the acceptance condition is defined as follows:

Consider the configuration graph G(M,x). We extend the partition of the control states to the configurations
(nodes) of GM ;x: a configuration is in V0 if its control state is in Q∃; otherwise it is in V1. We then can consider
the reachability game played on G(M,x) by the players 0 and 1 where the target set is the set of accepting
configurations. M accepts x iff player 0 wins the initial configuration in this reachability game. (For the sake of
completeness, assume that every halting/accepting configuration is its unique successor.)

Example : Consider the following configuration graphs where accepting configurations have a second circle/rectangle drawn
around them. In the left graph the corresponding ATM accepts the input while it rejects the input in the right example:
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A language is decided by an ATM M if M accepts every x ∈ L and rejects any x 6∈ L. The time and space required by an
ATM is the time and space required by the underlying NDTM.

The class AP consists of all languages L which are decided by an ATM M running in time T (n) ∈ O(nk) for some k ≥ 1.

(a) An existential (universal) ATM is an ATM with Q∀ = ∅ (Q∃ = ∅).

Show that any language L ∈ AP which is decided by an existential (universal) ATM is in NP (coNP).

(b) Define coAP as usual: L ∈ coAP iff L ∈ AP.

Show or disprove that AP = coAP.

(c) Show that QBF is in AP.

(d) Show that any L ∈ AP is in PSPACE.

Remark : Adapt the recursive decision procedure for QBF ∈ PSPACE you have seen in the lecture.

Exercise 5.3

(a) Show that for any L ∈ PSPACE there is single-tape TM M (which may also write on its input tape) which decides
L also in polynomial space.

(b) Show that it is PSPACE-complete to decide if a given word w can be derived by a given context-sensitive grammar
G, i.e.,

ConSens := {〈G,w〉 | if G is a context-sensitive grammar and w ∈ L(G)}.


