Complexity Theory – Homework 5

Discussed on 26.05.2010.

Exercise 5.1

A two-person game consists of a directed graph $G = (V_0, V_1, E)$ (called the game graph) whose nodes $V := V_0 \cup V_1$ are partitioned into two sets and a winning condition. We assume that every node $v \in V$ has a successor. The two players are called for simplicity player 0 and player 1. A play of the two is any finite or infinite path $v_1v_2...$ in G where v_1 is the starting node. If the play is currently in node v_i and $v_i \in V_0$, then we assume that it is the turn of player 0 to choose v_{i+1} from the successors of v_i ; if $v_i \in V_1$, player 1 determines the next move. The winning condition defines when a play is won by player 0. E.g.:

- In a reachability game the winning condition is simply defined by a subset $T \subseteq V_0 \cup V_1$ (targets) of the nodes of G, and a play is won by player 0 if it visits T within n-1 moves (where n is the total number of nodes of G). Hence, player 1 wins a play if he can avoid visiting T for at least n-1 moves.
- In a *revisiting game* player 0 wins a play $v_1v_2...$ if the first node v_i which is visited a second time belongs to player 0, i.e., $v_i \in V_0$; otherwise player 1 wins the play.

We say that *player* i wins node s if he can choose his moves in such a way that he wins any play starting in s.

Example: Consider the following game graph where nodes of V_0 (V_1) are of circular (rectangular) shape:

In the reachability game with $T = \{5\}$ player 0 can win node 4: if player 1 moves from 4 to 5, player 0 immediately wins; if player 1 moves from 4 to 2, then player 0 can win again by moving from 2 to 5. On the other hand, player 1 can win node 0 by choosing to always play from 0 to 1 and from 3 to 1.

In the revisiting game played on the same game graph, player 0 can win node 2: he moves from 2 to 5 and then on to 4; no matter how player 1 then chooses to move, the play will end in an already visited node which belongs to player 0. Player 1 can e.g. win node 3 by simply moving to node 1.

(a) Consider a reachability game:

Show that one can decide in time polynomial in $\langle G, s, T \rangle$ if player 0 can win node s.

Hint: Starting in T compute the set of nodes from which player 0 can always reach T no matter how player 1 chooses his moves.

(b) Consider a revisiting game:

Show that it is **PSPACE**-complete to decide for a given game graph G and node s if player 0 can win s.

Remarks:

• A game is called *determined* if every node if won by one of the two players.

Are reachability, resp. revisiting games determined?

• Assume that we change the definition of reachability game by dropping the restriction on the number of moves, i.e., player 0 wins a play if the play eventually reaches a state in T.

Does this change the nodes player 0 can win for a given game graph?

Exercise 5.2

An alternating Turing machine (ATM) $M = (\Gamma, Q_{\forall}, Q_{\exists}, \delta_0, \delta_1)$ is an NDTM $(\Gamma, Q_{\forall} \cup Q_{\exists}, \delta_0, \delta_1)$ except that (i) the control states are partitioned into sets Q_{\forall} and Q_{\exists} and (ii) the acceptance condition is defined as follows:

Consider the configuration graph G(M, x). We extend the partition of the control states to the configurations (nodes) of $G_{M;x}$: a configuration is in V_0 if its control state is in Q_{\exists} ; otherwise it is in V_1 . We then can consider the reachability game played on G(M, x) by the players 0 and 1 where the target set is the set of accepting configurations. M accepts x iff player 0 wins the initial configuration in this reachability game. (For the sake of completeness, assume that every halting/accepting configuration is its unique successor.)

Example: Consider the following configuration graphs where accepting configurations have a second circle/rectangle drawn around them. In the left graph the corresponding ATM accepts the input while it rejects the input in the right example:

A language is decided by an ATM M if M accepts every $x \in L$ and rejects any $x \notin L$. The time and space required by an ATM is the time and space required by the underlying NDTM.

The class **AP** consists of all languages L which are decided by an ATM M running in time $T(n) \in \mathcal{O}(n^k)$ for some $k \ge 1$.

(a) An existential (universal) ATM is an ATM with $Q_{\forall} = \emptyset$ ($Q_{\exists} = \emptyset$).

Show that any language $L \in \mathbf{AP}$ which is decided by an existential (universal) ATM is in NP (coNP).

(b) Define $\operatorname{co} \mathbf{AP}$ as usual: $L \in \operatorname{co} \mathbf{AP}$ iff $\overline{L} \in \mathbf{AP}$.

Show or disprove that $\mathbf{AP} = \mathbf{coAP}$.

- (c) Show that QBF is in **AP**.
- (d) Show that any $L \in \mathbf{AP}$ is in **PSPACE**.

Remark: Adapt the recursive decision procedure for $QBF \in \mathbf{PSPACE}$ you have seen in the lecture.

Exercise 5.3

- (a) Show that for any $L \in \mathbf{PSPACE}$ there is single-tape TM M (which may also write on its input tape) which decides L also in polynomial space.
- (b) Show that it is **PSPACE**-complete to decide if a given word w can be derived by a given context-sensitive grammar G, i.e.,

CONSENS := { $\langle G, w \rangle$ | if G is a context-sensitive grammar and $w \in L(G)$ }.