Complexity Theory – Homework 4

Discussed on 19.05.2010.

Exercise 4.1

An optimization problem consists of the following:

- PI: the set of problem instances.
- SC: the set of solution candidates.
- $R \subseteq PI \times SC$: the binary relation such that $(x, y) \in R$ iff y is a solution of x.
 - We assume that for every $x \in PI$ there is *always* some (perhaps trivial) solution $y \in SC$ with $(x, y) \in R$.
- v: the valuation function which maps every pair $(x, y) \in PI \times SC$ to an integer v(x, y).

We are then interested in calculating the optimal values

 $\max_{R;v}(x) = \max\{v(x,y) \mid (x,y) \in R\} \text{ resp. } \min_{R;v}(x) := \min\{v(x,y) \mid (x,y) \in R\}.$

Note that a minimization problem becomes a maximization problem by changing the sign of v. We therefore focus on maximization in the following. The decision problem associated with $\max_{R;v}$ is then

$$\operatorname{Max}_{R:v}^{D} := \{ (x,k) \in \operatorname{PI} \times \mathbb{Z} \mid \exists y : (x,y) \in R \land v(x,y) \ge k \}.$$

Example: Let PI be the set of undirected graphs, SC the set of sets of nodes, and let $(x, y) \in R$ iff y is an independet set of x. With v(x, y) the number of nodes in y, we have INDSET = Max^D_{R:v}.

We assume some reasonable (i.e., not unary) encoding of PI and SC and that

- PI, SC, and R are decidable in polynomial time.
- v is computable in polynomial time.
- there is a polynomial p with $|y| \le p(|x|)$ for every $(x, y) \in R$ (with $|\cdot|$ the length of the encoding).

Remark: Check that these assumptions, in particular the last one, are satisfied by INDSET.

(a) MAXSAT is defined as follows: given a CNF formula ϕ and an integer k, decide if there is a truth assignment which satisfies at least k clauses of ϕ .

Show that MAXSAT is an optimization problem as defined above.

- (b) Show that $\operatorname{Max}_{R:v}^{D}$ is in **NP**.
- (c) Show that there is a polynomial r such that $|v(x,y)| \le r(|x|)$ for all $(x,y) \in R$.

Conclude that in time polynomial in |x| one can compute b(x), B(x) such that $b(x) \le v(x, y) \le B(x)$ for all $(x, y) \in R$.

(d) Show that $\max_{R;v}(x)$ can be calculated using binary search and a polynomial number of calls to $\max_{R:v}^{D}$.

We might also be interested in maximal solutions, i.e.,

$$\operatorname{Max}_{R:v} := \{ (x, z) \in R \mid \forall y : (x, y) \in R \Rightarrow v(x, y) \le v(x, z) \}$$

(e) Show that $\overline{\operatorname{Max}_{R;v}} \leq_p \operatorname{Max}_{R;v}^D$.

Conclude that $\operatorname{Max}_{R;v} \in \operatorname{co}\mathbf{NP}$ and even $\operatorname{Max}_{R;v} \in \mathbf{NP} \cap \operatorname{co}\mathbf{NP}$ if $\operatorname{Max}_{R:v}^{D} \in \mathbf{NP} \cap \operatorname{co}\mathbf{NP}$.

We say that $\operatorname{Max}_{R:v}^{D}$ is dual to $\operatorname{Min}_{S:w}^{D}$ if

$$\operatorname{Max}_{R;v}^D \leq_p \overline{\operatorname{Min}_{S;w}^D}$$
 and $\operatorname{Min}_{S;w}^D \leq_p \overline{\operatorname{Max}_{R;v}^D}$.

- (f) Assume that $\operatorname{Max}_{R;v}^{D}$ is dual to some minimization problem $\operatorname{Min}_{S;w}^{D}$. Show that $\operatorname{Max}_{R;v}^{D} \in \mathbf{NP} \cap \operatorname{coNP}$.
- *(g) Assume that $\operatorname{Max}_{R;v}$ is in **NP** \cap co**NP**. Show that $\operatorname{Max}_{R;v}^D$ is then dual to some $\operatorname{Min}_{S;w}^D$.

Exercise 4.2

- (a) Assume $A \leq_p B$. Show that then also $\overline{A} \leq_p \overline{B}$.
- (b) A class **C** of languages is closed under \leq_p if whenever $A \leq_p B \land B \in \mathbf{C}$, then also $A \in \mathbf{C}$. Show that if **C** is closed under \leq_p , then so is $\operatorname{co} \mathbf{C} := \{\overline{L} \mid L \in \mathbf{C}\}.$
- (c) Show that co**NP** is closed under intersection and union of languages.

Exercise 4.3

(a) Assume that $\mathbf{P}=\mathbf{NP}$. Show that then $\mathbf{EXP}=\mathbf{NEXP}$.

Remark: Assume that L is decided by some TM running in time T(n) with T(n) time-constructible and $T(n) \in \mathcal{O}(2^{n^c})$ for some $c \ge 1$. Show that then

$$L_{\text{pad}} := \{ x 10^{T(|x|)} 1 \mid x \in L \} \in \mathbf{NP}.$$

*(b) Show that also $\mathbf{EXP} = \mathbf{NEXP}$ if only every unary \mathbf{NP} -language is also in \mathbf{P} .

Remark: For $x \in \{0,1\}^*$ let $\langle x \rangle$ be the natural number represented by x assuming lsbf. Given a language L which is decided in time T(n) (with T(n) time-constructable) show that

$$L_{\text{upad}} = \{1^{\langle x10^{|T(n)|}1\rangle} \mid x \in L\} \in \mathbf{NP}$$

with $|T(n)| (\approx \lceil \log T(n) \rceil)$ the length of the lsbf representation of T(n).