Complexity Theory - Homework 4

Discussed on 19.05.2010.

Exercise 4.1

An optimization problem consists of the following:

- PI: the set of problem instances.
- SC: the set of solution candidates.
- $R \subseteq \mathrm{PI} \times \mathrm{SC}$: the binary relation such that $(x, y) \in R$ iff y is a solution of x.

We assume that for every $x \in \mathrm{PI}$ there is always some (perhaps trivial) solution $y \in \mathrm{SC}$ with $(x, y) \in R$.

- v : the valuation function which maps every pair $(x, y) \in \mathrm{PI} \times \mathrm{SC}$ to an integer $v(x, y)$.

We are then interested in calculating the optimal values

$$
\max _{R ; v}(x)=\max \{v(x, y) \mid(x, y) \in R\} \text { resp. } \min _{R ; v}(x):=\min \{v(x, y) \mid(x, y) \in R\} .
$$

Note that a minimization problem becomes a maximization problem by changing the sign of v. We therefore focus on maximization in the following. The decision problem associated with $\max _{R ; v}$ is then

$$
\operatorname{Max}_{R ; v}^{D}:=\{(x, k) \in \operatorname{PI} \times \mathbb{Z} \mid \exists y:(x, y) \in R \wedge v(x, y) \geq k\}
$$

Example: Let PI be the set of undirected graphs, SC the set of sets of nodes, and let $(x, y) \in R$ iff y is an independet set of x. With $v(x, y)$ the number of nodes in y, we have INDSET $=\operatorname{Max}_{R ; v}^{D}$.

We assume some reasonable (i.e., not unary) encoding of PI and SC and that

- PI, SC, and R are decidable in polynomial time.
- v is computable in polynomial time.
- there is a polynomial p with $|y| \leq p(|x|)$ for every $(x, y) \in R$ (with $|\cdot|$ the length of the encoding).

Remark: Check that these assumptions, in particular the last one, are satisfied by INDSET.
(a) mAXSAT is defined as follows: given a CNF formula ϕ and an integer k, decide if there is a truth assignment which satisfies at least k clauses of ϕ.

Show that MAXSAT is an optimization problem as defined above.
(b) Show that $\operatorname{Max}_{R ; v}^{D}$ is in NP.
(c) Show that there is a polynomial r such that $|v(x, y)| \leq r(|x|)$ for all $(x, y) \in R$.

Conclude that in time polynomial in $|x|$ one can compute $b(x), B(x)$ such that $b(x) \leq v(x, y) \leq B(x)$ for all $(x, y) \in R$.
(d) Show that $\max _{R ; v}(x)$ can be calculated using binary search and a polynomial number of calls to $\operatorname{Max}_{R ; v}^{D}$.

We might also be interested in maximal solutions, i.e.,

$$
\operatorname{Max}_{R ; v}:=\{(x, z) \in R \mid \forall y:(x, y) \in R \Rightarrow v(x, y) \leq v(x, z)\}
$$

(e) Show that $\overline{\operatorname{Max}_{R ; v}} \leq{ }_{p} \operatorname{Max}_{R ; v}^{D}$.

Conclude that $\operatorname{Max}_{R ; v} \in \operatorname{coNP}$ and even $\operatorname{Max}_{R ; v} \in \mathbf{N P} \cap \operatorname{coNP}$ if $\operatorname{Max}_{R ; v}^{D} \in \mathbf{N P} \cap \operatorname{coNP}$.
We say that $\operatorname{Max}_{R ; v}^{D}$ is dual to $\operatorname{Min}_{S ; w}^{D}$ if

$$
\operatorname{Max}_{R ; v}^{D} \leq_{p} \overline{\operatorname{Min}_{S ; w}^{D}} \text { and } \operatorname{Min}_{S ; w}^{D} \leq_{p} \overline{\operatorname{Max}_{R ; v}^{D}}
$$

(f) Assume that $\operatorname{Max}_{R ; v}^{D}$ is dual to some minimization problem $\operatorname{Min}_{S ; w}^{D}$. Show that $\operatorname{Max}_{R ; v}^{D} \in \mathbf{N P} \cap c o N P$.

* (g) Assume that $\operatorname{Max}_{R ; v}$ is in $\mathbf{N P} \cap c o N P$. Show that $\operatorname{Max}_{R ; v}^{D}$ is then dual to some $\operatorname{Min}_{S ; w}^{D}$.

Exercise 4.2

(a) Assume $A \leq_{p} B$. Show that then also $\bar{A} \leq_{p} \bar{B}$.
(b) A class \mathbf{C} of languages is closed under \leq_{p} if whenever $A \leq_{p} B \wedge B \in \mathbf{C}$, then also $A \in \mathbf{C}$.

Show that if \mathbf{C} is closed under \leq_{p}, then so is co $\mathbf{C}:=\{\bar{L} \mid L \in \mathbf{C}\}$.
(c) Show that coNP is closed under intersection and union of languages.

Exercise 4.3

(a) Assume that $\mathbf{P}=\mathbf{N P}$. Show that then $\mathbf{E X P}=\mathbf{N E X P}$.

Remark: Assume that L is decided by some TM running in time $T(n)$ with $T(n)$ time-constructible and $T(n) \in \mathcal{O}\left(2^{n^{c}}\right)$ for some $c \geq 1$. Show that then

$$
L_{\mathrm{pad}}:=\left\{x 10^{T(|x|)} 1 \mid x \in L\right\} \in \mathbf{N P} .
$$

*(b) Show that also $\mathbf{E X P}=\mathbf{N E X P}$ if only every unary $\mathbf{N P}$-language is also in \mathbf{P}.
Remark: For $x \in\{0,1\}^{*}$ let $\langle x\rangle$ be the natural number represented by x assuming lsbf. Given a language L which is decided in time $T(n)$ (with $T(n)$ time-constructable) show that

$$
L_{\text {upad }}=\left\{1^{\left\langle x 10^{|T(n)|} 1\right\rangle} \mid x \in L\right\} \in \mathbf{N P}
$$

with $|T(n)|(\approx\lceil\log T(n)\rceil)$ the length of the lsbf representation of $T(n)$.

