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Complexity Theory – Homework 2

Discussed on 05.05.2010.

Exercise 2.1

Argue that the following theorem on the linear speedup of Turing machine holds:

Let L ⊆ {0, 1}∗ be a language decided by a Turing machine M in time T (n). Then, for any c > 0 there is Turing
machine M ′ which decides L in time T ′(n) := cT (n) + n+C (with C some constant independent of L or c, e.g.,
C ≤ 10 should work).

Remark : Fix any constant m ∈ N. Then M ′ first compresses the input from size n to size d nme on some auxiliary work tape.
Then M ′ simulates m steps of M within at most 10 steps. (In fact, 6 steps should be sufficient.) Finally, choose the constant
m in such a way that M ′ simulates M in time T ′(n).

Exercise 2.2

Let M be a Turing machine which computes a function f : {0, 1}∗ → {0, 1}∗. As mentioned in the lecture, we are basically
interested in two resources, time and space, needed by M for computing f(x) from the input x. Measuring time is straight-
forward, we simply count the number of steps M does on input x. In the case of space, one is usually not interested in the
space required for storing the input or the output, but only in the space required for computing the output from the input.
One therefore defines:

A function f : {0, 1}∗ → {0, 1}∗ is computable in space S(n) if there is a Turing machine Mf such that

(i) Mf computes f .

(ii) Mf does not write any blanks (�).

(iii) Mf never moves the head of the output tape to the left.

(iv) For every input x of length n = |x| the total number of non-blank symbols on all work tapes is bounded
from above by S(n) in every step of the computation.

Similar to the definition of DTIME, we write f ∈ DSPACE(S) if there is a Turing machine which computes f in space
S′(n) for some S′ ∈ O(S). Finally, a language L ⊆ {0, 1}∗ is decided in SPACE(S) if its characteristic function fL is
computable in SPACE(S) (with fL(x) := 1 if x ∈ L, and fL(x) := 0 if x 6∈ L).

(a) Show that the function inc : {0, 1}∗ → {0, 1}∗ which increases x by one (interpreting x as a natural number via the
lsbf-encoding) is computable in constant space O(1).

(b) How much space is needed to decide the language of palindromes?

(c) Show or disprove that we may strengthen condition (iii) to “Mf never moves the head of the output tape to the left
and never overwrites a non-blank symbol on the output tape”.

(d) Argue that if a function f is computable in space S(n), then it is also computable in space cS(n)+C for any c ∈ (0,∞)
(with C some constant independent of f or c, e.g., C ≤ 10 should work).

*(e) For those who know two-way finite automata:

Argue that every Turing machine using bounded space is basically a finite automaton with output.



Exercise 2.3

In the lecture, you have seen the definition of “polynomial-time reducible” ≤p:

For two languages A,B ⊆ {0, 1}∗ we write A ≤p B if there is a function f : {0, 1}∗ → {0, 1}∗ computable in
polynomial time such that x ∈ A⇔ f(x) ∈ B for all x ∈ {0, 1}∗.

Similarly, the notion of “log-space reducible” ≤log is defined but this time the function f has to be computable by a Turing
machine using at most O(log n) space.

(a) Show that A ≤log B implies A ≤p B.

(b) Show that for any two languages A,B in P with B 6= ∅, {0, 1}∗ we have A ≤p B.

Remark : Using ≤log one can also define P-complete problems in a meaningful way.

(c) Argue that ≤log is also transitive, i.e., if A ≤log B ≤log C, then also A ≤log C.

Hint : Let Mf , resp. Mg be O(log n)-space Turing machines computing the functions f , resp. g underlying A ≤log B,
resp. B ≤log C. Note that you cannot simply first calculate f(x) using Mf and then g(f(x)) by intializing Mg on input
f(x) as the resulting composed Turing machine requires polynomial space for storing the intermediate result f(x).


