
Checking emptiness of
Büchi automata 



Accepting lassos

• A NBA is nonempty iff it has an accepting lasso



Setting

• We want on-the-fly algorithms that search for 
an accepting lasso of a given NBA while 
constructing it.

• The algorithms know the initial state, and have 
access to an oracle that, called with a state 푞
returns all successors of 푞 (and for each 
successor whether it is accepting or not).

• We think big: the NBA may have tens of millions 
of states.



Two approaches

1. Compute the set of accepting states, and for 
each accepting state, check if it belongs to 
some cycle.
Nested-depth-first-search algorithm

2. Compute the set of states that belong to 
some cycle, and for each of them, check if it 
is accepting.
Two-stack algorithm



First approach: A naïve algorithm

1. Compute the set of accepting states by 
means of a graph search (DFS, BFS, …).

2. For each accepting state 푞, conduct a second 
search (DFS, BFS,…) starting at 푞 to decide if 
푞 belongs to a cycle.



First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions
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Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We want an 푂(푚) algorithm.
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푚 transitions



Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as “discovered” (but 
don’t remove it yet).

– If all successors of the state have already been discovered, then 
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to 
the workset.

• Depth-first search: workset is implemented as a stack (first in last 
out)

• Breadth-first search: workset is implemented as a queue (first in first 
out)
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Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks 

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored, 

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛
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An example



Recursive implementation of DFS



Parenthesis theorem

• 퐼(푞) denotes the interval 푑 푞 , 푓 푞 .

• 퐼 푞 ≺ 퐼 푟 denotes 푓 푞 < 푑 푟 holds 
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟, 
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and q ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other
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White-path and grey-path theorems

• White-path theorem. 푞 ⇒ 푟 (and so 퐼 푟 ⊆
퐼 푞 ) iff at time 푑[푞] state 푟 can be reached 
from 푞 along a path of white states.

• Grey-path theorem. At every momnet in time, 
all grey nodes form a simple path of the DFS 
tree (the grey path).
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tree (the grey path).



Nested-DFS algorithm

• Modification of the naïve algorithm:
– Use a DFS to discover the accepting states

and sort them in a certain order 푞 , 푞 , … , 푞 ;
– conduct a DFS from each accepting state

in the order 푞 , 푞 , … , 푞 .

• The order will guarantee that if the search from 푞
hits a state already discovered during the search from 
푞 , for some 푖 < 푗, then the search can backtrack.

• Runtime: 푂(푚), because every transition is explored 
at most twice, once in each phase.



Nested-DFS algorithm

• Suitable order: postorder
• The postorder sorts the states according to 

increasing finishing time.

푓 푞 ≤ 푓 푞 ≤ 푓[푞 ]



Why does it work?

DFS-tree
backedges

crossedges
forward edges

푞

푞
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• Edges processed counterclockwise
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• Edges processed counterclockwise
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푟

• State 푟 discovered during  the search from 푞
• To prove: during the search from 푞 , it is safe 

to backtrack from 푟, because we do not “miss 
any accepting lassos”

• Amounts to: proving that 푞 is not reachable 
from 푟.



What do we have to prove?

DFS-tree
Other edges

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞
푟

• State 푟 discovered during  the search from 푞
• To prove: during the search from 푞 (or 푞 ), it 

is safe to backtrack from 푟, because we do not 
“miss any accepting lassos”

• Amounts to: proving that 푞 (or 푞 ) is not 
reachable from 푟.



Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is 
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so 
퐼 푟 ⊆ 퐼(푞), which together with 푑 푠 ≤ 푑[푞] contradicts 
푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 . 

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟]. 
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.
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퐼 푟 ⊆ 퐼(푞), which contradicts 푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 . 

Since at time 푑 푠 the subpath of 휋 from 푠 to 푟 is white, we 
have 퐼 푟 ⊆ 퐼 푠 . If 퐼 푠 ≺ 퐼 푞 then 푓 푞 > 푓[푟]. So 퐼 푞 ⊂
퐼 푠 , and so s ⇒ 푞, which implies 푠 ↝ 푞.



Correctness proof

Theorem. Assume:
• 푞 and 푟 are accepting states such that 푓 푞 < 푓 푟 ;
• the search from 푞 has finished without an accepting lasso; 

and
• the search from 푟 has just discovered a state 푠 that was also 

discovered in the search from 푞.
Then 푟 is not reachable from 푠 (and so it is safe to backtrack 
from 푠).
Proof: Assume 푠 ↝ 푟. Since 푞 ↝ 푠 we have 푞 ↝ 푟. By the lemma
some cycle contains 푞, contradicting that the search from 푞 was 
unsuccessful.
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Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at 
least once.

– If the algorithm must return a witness of non-emptiness, 
then it requires a lot of memory.

• The problems can be solved by nesting the searches:
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞, 

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination 
continue with the first DFS.

– If the first DFS terminates, report EMPTY.
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Evaluation

• Plus points:
– Very low memory consumption: two extra bits per 

state.
– Easy to understand and prove correct.

• Minus points:
– Cannot be generalized to NGAs.
– It may return unnecessarily long witnesses.
– It is not optimal. An emptiness algorithm is optimal if

it answers NONEMPTY immediately after the explored
part of the NBA contains an accepting lasso.
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it answers NONEMPTY immediately after the explored
part of the NBA contains an accepting lasso.



Nested DFS is not optimal



Recall: Two approaches

1. Compute the set of accepting states, and for 
each accepting state, check if it belongs to a 
cycle.
Nested depth first search algorithm

2. Compute the set of states that belong to 
some cycle, and for each of them, check if it 
is accepting.
Two-stack algorithm



Second approach: a naïve algorithm

• Conduct a DFS, and for each discovered accepting 
state  푞 start a new DFS from 푞 to check if it 
belongs to a cycle.

• Problem: too expensive.
• Goal: conduct one single DFS which marks states 

in such a way that
– every marked state belongs to a cycle, and 
– every state that belongs to a cycle is eventually 

marked.
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There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA 
iff it belongs to a cycle of the discovered part of the NBA.

Proof. 
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.  
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 is DFS-ascendant of 푞, and every transition 

of 푠 푞 has been discovered at time 푓[푞].

So cycle 푞→푟 → 푠 푞 has been discovered 
at time 푓 푞 .
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First ideas

• Maintain a set 퐶 of candidates: states for which the search cannot yet decide if 
they belong to a cycle or not.
– States are added to 퐶 when they are greyed.
– States are removed from 퐶 when blackened, or before.
– States are removed before they are blackened iff they belong to a cycle.

• At all times 퐶 contains only grey states.
• Updating 퐶 when the DFS explores a transition 푞, 푟 .

– If 푟 is a new state, add 푟 to 퐶.
– If 푟 has already been discovered, but 푞 is not reachable from 푟, do nothing.
– If 푟 has already been discovered and 푟 ↝ 푞 then new cycles are created. 

Which states must be removed from 퐶?
• For the moment we assume that an oracle determines if  푟 ↝ 푞 holds.
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Updating 퐶: first attempt

• After exploring (푞 , 푞 ) we have to remove 푞 , … , 푞 from 퐶.
• Suggests implementing 퐶 as stack.
• First attempt:

– push a state when it is discovered.
– If 푞, 푟 is explored, 푟 has already been discovered, and 
푟 ↝ 푞, pop until 푟 is popped.
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Problem and second attempt

After exploring 푞 , 푞 states 푞 , … , 푞
are popped. 
After exploring 푞 , 푞 , since 푞 is not in 
the stack, 푞 is wrongly popped.
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After exploring 푞 , 푞 states 푞 , … , 푞
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After exploring 푞 , 푞 , since 푞 is not in 
the stack, 푞 is wrongly popped.

Second attempt: when exploring 푞, 푟
– If 푟 had not been discovered yet, then 

push it into 퐶.
– if 푟 had already been discovered and 
푟 ↝ 푞, then pop from 퐶 until 푟 is 
popped and then push 푟 back.



Problem and final attempt

After exploring 푞 , 푞 states 푞 , … , 푞 are 
popped and 푞 is pushed back again.
After exploring 푞 , 푞 , since 푞 is not in the 
stack, 푞 is wrongly popped.
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After exploring 푞 , 푞 states 푞 , … , 푞 are 
popped and 푞 is pushed back again.
After exploring 푞 , 푞 , since 푞 is not in the 
stack, 푞 is wrongly popped.

We will show: a state belongs to a 
cycle iff it is popped at least once 
before it is blackened.

Final attempt: when exploring 푞, 푟
– If 푟 has not been discovered yet, 

push it into 퐶.
– if 푟 has already been discovered 

and 푟 ↝ 푞, then pop from 퐶 until 
푟 or some state discovered before 
푟 is popped, and then push this 
state back.
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Popped before
blackening: 

belongs to cycle.



The OneStack algorithm

Popped when
blackening: does not 

belong to cycle
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Questions

• Is OneStack correct ?
Proof obligations:
1) Every node that belongs to some cycle is 

eventually popped by the repeat loop.
2) Every node that is popped by the repeat loop 

belongs to a cycle.

• Is OneStack optimal ?



All nodes in cycles are eventually popped

Proposition. If 푞 belongs to a cycle, then 푞 is 
eventually popped by the repeat loop.
Proof. 

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at 

time 푑[푞] there is white path form 푞
to 푞′

푟: successor of 푞′ in 휋
We have 푑 푟 ≤ 푑 푞 ≤ 푑[푞 ].
By the White-Path Theorem 푞′ is a 
descendant of 푞, and so (푞′, 푟) is explored 
before q is blackened.
So when (푞′, 푟) is explored, 푞 has not been 
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been 
popped before or it is popped now because 
푑 푟 ≤ 푑[푞 ].
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Proposition. If 푞 belongs to some cycle, then 
푞 is eventually popped by the repeat loop.
Proof. 

휋: cycle containing 푞
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By the White-Path Theorem 푞′ is a 
descendant of 푞, and so (푞′, 푟) is explored 
before 푞 is blackened.
So when (푞′, 푟) is explored, 푞 has not been 
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been 
popped in the repeat loop or it is popped 
now because 푑 푟 ≤ 푑[푞 ].
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All nodes in cycles are eventually popped

Proposition. If 푞 belongs to some cycle, then 
푞 is eventually popped by the repeat loop.
Proof. 

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at 

time 푑[푞] there is white path from 푞
to 푞′

푟: successor of 푞′ in 휋
At time 푑 푞 we have 푑 푟 ≤ 푑 푞 ≤ 푑[푞 ].
By the White-Path Theorem 푞′ is a 
descendant of 푞, and so (푞′, 푟) is explored 
before 푞 is blackened.
So when (푞′, 푟) is explored, 푞 has not been 
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been 
popped before or it is popped now because 
푑 푟 ≤ 푑[푞 ].

This proof also shows optimality: 
푞 is popped immediately after 
the DFS explores all transitions of 
휋, or earlier. 
Since 휋 is an arbitrary cycle, 
푂푛푒푆푡푎푐푘 is optimal.
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All popped nodes belong to cycles

• To show that every node popped by the repeat loop belongs to 
some cycle we need some concepts:
– strongly connected component (scc) of a graph
– dag of sccs of a graph
– root of an scc in a DFS.
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All popped nodes belong to cycles
Invariant of OneStack: The repeat loop cannot remove a 
grey root 휌 from the stack (remove = pop and don’t push 
back), and can only pop states 푠 such that 푑 푠 ≥ 푑[휌].
Proof (sketch):

푡: time at which repeat loop starts because 푟 ↝ 푞
for some (푞, 푟).

휌: grey root at time 푡.
푟 and 푞 belong to the same scc.

휌′: root of this scc.
푞, 휌, and 휌′ are grey at time 푡, and 푞 ↝ 휌′ ↝ 푞.
By the grey-path theorem and since 휌 is root, we have 

휌 푞 휌′ and so 푑 휌 ≤ 푑 휌′ ≤ 푑[푟].
So every state 푠 popped by the repeat loop satisfies 
푑 푠 ≥ 푑[푞].
Further, if 휌 is popped, then it is pushed immediately 
after at line 12.
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All popped nodes belong to cycles
Proposition: Any state popped by the repeat loop 
belongs to some cycle.
Proof (sketch):

푠: state popped by the repeat loop
푡: time at which the repeat loop starts popping

푞, 푟 : current transition ( 푟 ↝ 푞 ).
휌: root of the scc of 푟 and 푞

Observe: 푞, 푠,휌 are grey at time t
1. 푠 ⇒ 푞. Because 푠, 푞 grey at time 푡 and dfs(푞) is 

being currently executed.
2. 휌 ⇒ 푠 . Since 휌, 푞 grey at time 푡 and 휌 is root we 

have  휌 ⇒ 푞 , By 1) either 휌 ⇒ 푠 or 푠 ⇒ 휌. By the 
invariant 푑 휌 ≤ 푑[푠] and so 휌 ⇒ 푠 .

By 1) and 2) we have 휌 ↝ 푠 ↝ 푞 ↝ 푟 ↝ 휌, and so 푠
belongs to a cycle.
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Implementing the oracle

Assume OneStack calls the oracle for 푟 ↝ 푞. We 
look for a condition that holds at that moment iff
푟 ↝ 푞 holds, and is easy to check.

Lemma. Assume OneStack is exploring (푞, 푟) and 푟
is already discovered. Let 푅 be the scc of 푟. Then 
푟 ↝ 푞 iff some state of 푅 is not black.
Proof. (⇒) Then 푟, 푞 ∈ 푅 and 푞 is not black.
(⇐) At least one 푠 ∈ 푅 is grey. By the grey-path 
theorem there is a grey path 푠 ⇒ 푞. So 푟 ↝ 푠 ⇒ 푞
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Implementing the oracle

• Idea: maintain a set 푉 of active states whose sccs have not 
yet been completely explored (not yet black)

• Since the root is the first state of an sc to be greyed and the 
last to be blackened, we can proceed as follows:
– Add states to 푉 when they are discovered.
– Remove states from 푉 when the root of their sccs is blackened.

• So 푉can be implemented as a stack: when a root 휌 is 
blackened, pop from 푉until 휌 is popped.

• Problem to solve: when blackening a node, decide if it is a 
root.
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Implementing the oracle
• Idea: maintain a set 푉 of active states whose sccs have not yet 

been completely explored (not yet black)

• Since the root is the first state of an scc to be greyed and the last 
to be blackened, we can proceed as follows:
– Add states to 푉 when they are discovered.
– Remove states from 푉 when the root of their sccs is blackened.

So 푉 can be implemented as a second stack maintained as follows:

– when a state is greyed, it is pushed into 푉;

– when a root is blackened, all states of 푉 above it (including the
root) are popped.

• Problem to solve: when blackening a node, decide if it is a root.



Implementing the oracle
Lemma. At line 13, 푞 is a root iff top(퐶) = 푞.
Proof. (⇒) If 푞 is root, by the invariant it still 
belongs to 퐶 after the for-loop, and so top(퐶) = 푞.
(⇐) 휌: root of scc of 푞, different from 푞

휋: path from 휌 to 푞 
푟: first state of 휋 s.t. 푑 푟 < 푑[푞]
푞′: successor of 푟 in 휋

The white-path theorem gives 푞 ⇒ 푞′.
So when 푞′, 푟 is explored 푞 is not yet black, and 
all 푠 s.t. 푑 푠 > 푑[푟] are popped from 퐶 and not 
pushed back.
So either 푞 has already been popped, or it is 
popped now.
Since 푞 not yet black, at line 13 푞 is not in 퐶, and so 
top 퐶 ≠ 푞.
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