
Checking emptiness of
Büchi automata

Accepting lassos

• A NBA is nonempty iff it has an accepting lasso

Setting

• We want on-the-fly algorithms that search for
an accepting lasso of a given NBA while
constructing it.

• The algorithms know the initial state, and have
access to an oracle that, called with a state 푞
returns all successors of 푞 (and for each
successor whether it is accepting or not).

• We think big: the NBA may have tens of millions
of states.

Two approaches

1. Compute the set of accepting states, and for
each accepting state, check if it belongs to
some cycle.
Nested-depth-first-search algorithm

2. Compute the set of states that belong to
some cycle, and for each of them, check if it
is accepting.
Two-stack algorithm

First approach: A naïve algorithm

1. Compute the set of accepting states by
means of a graph search (DFS, BFS, …).

2. For each accepting state 푞, conduct a second
search (DFS, BFS,…) starting at 푞 to decide if
푞 belongs to a cycle.

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We want an 푂(푚) algorithm.

푛 states
푚 transitions

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as “discovered” (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as “discovered” (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not-yet-discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not-yet-discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack
(first in last out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not-yet-discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack
(first in last out)

• Breadth-first search: workset is implemented as a queue
(first in first out)

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology

• States are discovered by the search.
• After recursively exploring all successors, the search backtracks

from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– grey: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

An example

Recursive implementation of DFS

Parenthesis theorem

• 퐼(푞) denotes the interval 푑 푞 , 푓 푞 .

• 퐼 푞 ≺ 퐼 푟 denotes 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and q ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

Parenthesis theorem

• 퐼(푞) denotes the interval 푑 푞 , 푓 푞 .

• 퐼 푞 ≺ 퐼 푟 denotes that 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and q ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

Parenthesis theorem

• 퐼(푞) denotes the interval 푑 푞 , 푓 푞 .

• 퐼 푞 ≺ 퐼 푟 denotes that 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and q ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

Parenthesis theorem

• 퐼(푞) denotes the interval 푑 푞 , 푓 푞 .

• 퐼 푞 ≺ 퐼 푟 denotes that 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and 푞 ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

White-path and grey-path theorems

• White-path theorem. 푞 ⇒ 푟 (and so 퐼 푟 ⊆
퐼 푞) iff at time 푑[푞] state 푟 can be reached
from 푞 along a path of white states.

• Grey-path theorem. At every momnet in time,
all grey nodes form a simple path of the DFS
tree (the grey path).

White-path and grey-path theorems

• White-path theorem. 푞 ⇒ 푟 (and so 퐼 푟 ⊆
퐼 푞) iff at time 푑[푞] state 푟 can be reached
from 푞 along a path of white states.

• Grey-path theorem. At every moment in time,
all grey nodes form a simple path of the DFS
tree (the grey path).

Nested-DFS algorithm

• Modification of the naïve algorithm:
– Use a DFS to discover the accepting states

and sort them in a certain order 푞 , 푞 , … , 푞 ;
– conduct a DFS from each accepting state

in the order 푞 , 푞 , … , 푞 .

• The order will guarantee that if the search from 푞
hits a state already discovered during the search from
푞 , for some 푖 < 푗, then the search can backtrack.

• Runtime: 푂(푚), because every transition is explored
at most twice, once in each phase.

Nested-DFS algorithm

• Suitable order: postorder
• The postorder sorts the states according to

increasing finishing time.

푓 푞 ≤ 푓 푞 ≤ 푓[푞]

Why does it work?

DFS-tree
backedges

crossedges
forward edges

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞

Why does it work?

DFS-tree
backedges

crossedges
forward edges

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞

푟

• State 푟 discovered during the search from 푞
• To prove: during the search from 푞 , it is safe

to backtrack from 푟, because we do not “miss
any accepting lassos”

• Amounts to: proving that 푞 is not reachable
from 푟.

What do we have to prove?

DFS-tree
Other edges

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞
푟

• State 푟 discovered during the search from 푞
• To prove: during the search from 푞 (or 푞), it

is safe to backtrack from 푟, because we do not
“miss any accepting lassos”

• Amounts to: proving that 푞 (or 푞) is not
reachable from 푟.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which together with 푑 푠 ≤ 푑[푞] contradicts
푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which together with 푑 푠 ≤ 푑[푞] contradicts
푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which together with 푑 푠 ≤ 푑[푞] contradicts
푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which contradicts 푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which contradicts 푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which contradicts 푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

Since at time 푑 푠 the subpath of 휋 from 푠 to 푟 is white, we
have 퐼 푟 ⊆ 퐼 푠 . If 퐼 푠 ≺ 퐼 푞 then 푓 푞 > 푓[푟]. So 퐼 푞 ⊂
퐼 푠 , and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Theorem. Assume:
• 푞 and 푟 are accepting states such that 푓 푞 < 푓 푟 ;
• the search from 푞 has finished without an accepting lasso;

and
• the search from 푟 has just discovered a state 푠 that was also

discovered in the search from 푞.
Then 푟 is not reachable from 푠 (and so it is safe to backtrack
from 푠).
Proof: Assume 푠 ↝ 푟. Since 푞 ↝ 푠 we have 푞 ↝ 푟. By the lemma
some cycle contains 푞, contradicting that the search from 푞 was
unsuccessful.

Correctness proof

Theorem. Assume:
• 푞 and 푟 are accepting states such that 푓 푞 < 푓 푟 ;
• the search from 푞 has finished without an accepting lasso;

and
• the search from 푟 has just discovered a state 푠 that was also

discovered in the search from 푞.
Then 푟 is not reachable from 푠 (and so it is safe to backtrack
from 푠).
Proof: Assume 푠 ↝ 푟. Since 푞 ↝ 푠 we have 푞 ↝ 푟. By the lemma
some cycle contains 푞, contradicting that the search from 푞 was
unsuccessful.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• The problems can be solved by nesting the searches:
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Evaluation

• Plus points:
– Very low memory consumption: two extra bits per

state.
– Easy to understand and prove correct.

• Minus points:
– Cannot be generalized to NGAs.
– It may return unnecessarily long witnesses.
– It is not optimal. An emptiness algorithm is optimal if

it answers NONEMPTY immediately after the explored
part of the NBA contains an accepting lasso.

Evaluation

• Plus points:
– Very low memory consumption: two extra bits per

state.
– Easy to understand and prove correct.

• Minus points:
– Cannot be generalized to NGAs.
– It may return unnecessarily long witnesses.
– It is not optimal. An emptiness algorithm is optimal if

it answers NONEMPTY immediately after the explored
part of the NBA contains an accepting lasso.

Nested DFS is not optimal

Recall: Two approaches

1. Compute the set of accepting states, and for
each accepting state, check if it belongs to a
cycle.
Nested depth first search algorithm

2. Compute the set of states that belong to
some cycle, and for each of them, check if it
is accepting.
Two-stack algorithm

Second approach: a naïve algorithm

• Conduct a DFS, and for each discovered accepting
state 푞 start a new DFS from 푞 to check if it
belongs to a cycle.

• Problem: too expensive.
• Goal: conduct one single DFS which marks states

in such a way that
– every marked state belongs to a cycle, and
– every state that belongs to a cycle is eventually

marked.

Second approach: a naïve algorithm

• Conduct a DFS, and for each discovered accepting
state 푞 start a new DFS from 푞 to check if it
belongs to a cycle.

• Problem: too expensive.
• Goal: conduct one single DFS which marks states

in such a way that
– every marked state belongs to a cycle, and
– every state that belongs to a cycle is eventually

marked.

Second approach: a naïve algorithm

• Conduct a DFS, and for each discovered accepting
state 푞 start a new DFS from 푞 to check if it
belongs to a cycle.

• Problem: too expensive.
• Goal: conduct one single DFS which marks states

in such a way that
– every marked state belongs to a cycle, and
– every state that belongs to a cycle is eventually

marked.

There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA
iff it belongs to a cycle of the discovered part of the NBA.

Proof.
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 is DFS-ascendant of 푞, and every transition

of 푠 푞 has been discovered at time 푓[푞].

So cycle 푞→푟 → 푠 푞 has been discovered
at time 푓 푞 .

There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA
iff it belongs to a cycle of the discovered part of the NBA.

Proof.
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 is DFS-ascendant of 푞, and every transition

of 푠 푞 has been discovered at time 푓[푞].

So cycle 푞→푟 → 푠 푞 has been discovered
at time 푓 푞 .

There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA
iff it belongs to a cycle of the discovered part of the NBA.

Proof.
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 is DFS-ascendant of 푞, and every transition

of 푠 푞 has been discovered at time 푓[푞].

So cycle 푞→푟 → 푠 푞 has been discovered
at time 푓 푞 .

There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA
iff it belongs to a cycle of the discovered part of the NBA.

Proof.
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 is DFS-ascendant of 푞, and every transition

of 푠 푞 has been discovered at time 푓[푞].

So cycle 푞→푟 → 푠 푞 has been discovered
at time 푓 푞 .

There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA
iff it belongs to a cycle of the discovered part of the NBA.

Proof.
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 is DFS-ascendant of 푞, and every transition

of 푠 푞 has been discovered at time 푓[푞].

So cycle 푞→푟 → 푠 푞 has been discovered
at time 푓 푞 .

There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA
iff it belongs to a cycle of the discovered part of the NBA.

Proof.
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 ⇒ 푞, and every transition of 푠 ⇒ 푞 has been
discovered at time 푓[푞].

So cycle 푞→푟 → 푠 푞 has been discovered
at time 푓 푞 .

There is hope …

Lemma. At time 푓[푞], state 푞 belongs to a cycle of the NBA
iff it belongs to a cycle of the discovered part of the NBA.

Proof.
휋: cycle containing 푞.
푟: last black state after 푞 at 푓 푞 .
Case 푟 = 푞. Then 휋 has been discovered.
Case 푟 ≠ 푞.
푠: successor of 푟 in 휋.
We have 푑 푠 < 푓 푟 < 푓 푞 < 푓[푠].
So 푠 ⇒ 푞, and every transition of 푠 ⇒ 푞 has been
discovered at time 푓[푞].

So cycle 푞→푟 → 푠 ⇒ 푞 has been discovered at
time 푓 푞 .

First ideas

• Maintain a set 퐶 of candidates: states for which the search cannot yet decide if
they belong to a cycle or not.
– States are added to 퐶 when they are greyed.
– States are removed from 퐶 when blackened, or before.
– States are removed before they are blackened iff they belong to a cycle.

• At all times 퐶 contains only grey states.
• Updating 퐶 when the DFS explores a transition 푞, 푟 .

– If 푟 is a new state, add 푟 to 퐶.
– If 푟 has already been discovered, but 푞 is not reachable from 푟, do nothing.
– If 푟 has already been discovered and 푟 ↝ 푞 then new cycles are created.

Which states must be removed from 퐶?
• For the moment we assume that an oracle determines if 푟 ↝ 푞 holds.

First ideas

• Maintain a set 퐶 of candidates: states for which the search cannot yet decide if
they belong to a cycle or not.
– States are added to 퐶 when they are greyed.
– States are removed from 퐶 when blackened, or before.
– States are removed before they are blackened iff they belong to a cycle.

• At all times 퐶 contains only grey states.
• Updating 퐶 when the DFS explores a transition 푞, 푟 .

– If 푟 is a new state, add 푟 to 퐶.
– If 푟 has already been discovered, but 푞 is not reachable from 푟, do nothing.
– If 푟 has already been discovered and 푟 ↝ 푞 then new cycles are created.

Which states must be removed from 퐶?
• For the moment we assume that an oracle determines if 푟 ↝ 푞 holds.

First ideas

• Maintain a set 퐶 of candidates: states for which the search cannot yet decide if
they belong to a cycle or not.
– States are added to 퐶 when they are greyed.
– States are removed from 퐶 when blackened, or before.
– States are removed before they are blackened iff they belong to a cycle.

• At all times 퐶 contains only grey states.
• Updating 퐶 when the DFS explores a transition 푞, 푟 .

– If 푟 is a new state, add 푟 to 퐶.
– If 푟 has already been discovered, but 푞 is not reachable from 푟, do nothing.
– If 푟 has already been discovered and 푟 ↝ 푞 then new cycles are created.

Which states must be removed from 퐶?
• For the moment we assume that an oracle determines if 푟 ↝ 푞 holds.

First ideas

• Maintain a set 퐶 of candidates: states for which the search cannot yet decide if
they belong to a cycle or not.
– States are added to 퐶 when they are greyed.
– States are removed from 퐶 when blackened, or before.
– States are removed before they are blackened iff they belong to a cycle.

• At all times 퐶 contains only grey states.
• Updating 퐶 when the DFS explores a transition 푞, 푟 .

– If 푟 is a new state, add 푟 to 퐶.
– If 푟 has already been discovered, but 푞 is not reachable from 푟, do nothing.
– If 푟 has already been discovered and 푟 ↝ 푞 then new cycles are created.

Which states must be removed from 퐶?
• For the moment we assume that an oracle determines if 푟 ↝ 푞 holds.

Updating 퐶: first attempt

• After exploring (푞 , 푞) we have to remove 푞 , … , 푞 from 퐶.
• Suggests implementing 퐶 as stack.
• First attempt:

– push a state when it is discovered.
– If 푞, 푟 is explored, 푟 has already been discovered, and
푟 ↝ 푞, pop until 푟 is popped.

Updating 퐶: first attempt

• After exploring (푞 , 푞) we have to remove 푞 , … , 푞 from 퐶.
• Suggests implementing 퐶 as stack.
• First attempt:

– push a state when it is discovered.
– If 푞, 푟 is explored, 푟 has already been discovered, and
푟 ↝ 푞, then pop until 푟 is popped.

Updating 퐶: first attempt

• After exploring (푞 , 푞) we have to remove 푞 , … , 푞 from 퐶.
• Suggests implementing 퐶 as stack.
• First attempt: when exploring 푞, 푟

– If 푟 had not been discovered yet, then push it into 퐶.
– If 푟 had already been discovered and 푟 ↝ 푞, then pop

from 퐶 until 푟 is popped.

Problem and second attempt

After exploring 푞 , 푞 states 푞 , … , 푞
are popped.
After exploring 푞 , 푞 , since 푞 is not in
the stack, 푞 is wrongly popped.

Problem and second attempt

After exploring 푞 , 푞 states 푞 , … , 푞
are popped.
After exploring 푞 , 푞 , since 푞 is not in
the stack, 푞 is wrongly popped.

Second attempt: when exploring 푞, 푟
– If 푟 had not been discovered yet, then

push it into 퐶.
– if 푟 had already been discovered and
푟 ↝ 푞, then pop from 퐶 until 푟 is
popped and then push 푟 back.

Problem and final attempt

After exploring 푞 , 푞 states 푞 , … , 푞 are
popped and 푞 is pushed back again.
After exploring 푞 , 푞 , since 푞 is not in the
stack, 푞 is wrongly popped.

Problem and final attempt

After exploring 푞 , 푞 states 푞 , … , 푞 are
popped and 푞 is pushed back again.
After exploring 푞 , 푞 , since 푞 is not in the
stack, 푞 is wrongly popped.

Final attempt: when exploring 푞, 푟
– If 푟 had not been discovered yet,

push it into 퐶.
– if 푟 had already been discovered

and 푟 ↝ 푞, then pop from 퐶 until
푟 or some state discovered before
푟 is popped, and then push this
state back.

Problem and final attempt

After exploring 푞 , 푞 states 푞 , … , 푞 are
popped and 푞 is pushed back again.
After exploring 푞 , 푞 , since 푞 is not in the
stack, 푞 is wrongly popped.

We will show: a state belongs to a
cycle iff it is popped at least once
before it is blackened.

Final attempt: when exploring 푞, 푟
– If 푟 has not been discovered yet,

push it into 퐶.
– if 푟 has already been discovered

and 푟 ↝ 푞, then pop from 퐶 until
푟 or some state discovered before
푟 is popped, and then push this
state back.

The OneStack algorithm

The OneStack algorithm

Oracle

The OneStack algorithm

Popped before
blackening:

belongs to cycle.

The OneStack algorithm

Popped when
blackening: does not

belong to cycle

An example

An example

Questions

• Is OneStack correct ?
Proof obligations:
1) Every node that belongs to some cycle is

eventually popped by the repeat loop.
2) Every node that is popped by the repeat loop

belongs to a cycle.

• Is OneStack optimal ?

All nodes in cycles are eventually popped

Proposition. If 푞 belongs to a cycle, then 푞 is
eventually popped by the repeat loop.
Proof.

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at

time 푑[푞] there is white path form 푞
to 푞′

푟: successor of 푞′ in 휋
We have 푑 푟 ≤ 푑 푞 ≤ 푑[푞].
By the White-Path Theorem 푞′ is a
descendant of 푞, and so (푞′, 푟) is explored
before q is blackened.
So when (푞′, 푟) is explored, 푞 has not been
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been
popped before or it is popped now because
푑 푟 ≤ 푑[푞].

All nodes in cycles are eventually popped

Proposition. If 푞 belongs to some cycle, then
푞 is eventually popped by the repeat loop.
Proof.

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at

time 푑[푞] there is white path from 푞
to 푞′

푟: successor of 푞′ in 휋
We have 푑 푟 ≤ 푑 푞 ≤ 푑[푞].
By the White-Path Theorem 푞′ is a
descendant of 푞, and so (푞′, 푟) is explored
before q is blackened.
So when (푞′, 푟) is explored, 푞 has not been
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been
popped before or it is popped now because
푑 푟 ≤ 푑[푞].

푞

푟

푞′휋

All nodes in cycles are eventually popped

Proposition. If 푞 belongs to some cycle, then
푞 is eventually popped by the repeat loop.
Proof.

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at

time 푑[푞] there is white path from 푞
to 푞′

푟: successor of 푞′ in 휋
At time 푑 푞 we have 푑 푟 ≤ 푑 푞 ≤ 푑[푞].
By the White-Path Theorem 푞′ is a
descendant of 푞, and so (푞′, 푟) is explored
before q is blackened.
So when (푞′, 푟) is explored, 푞 has not been
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been
popped before or it is popped now because
푑 푟 ≤ 푑[푞].

푞

푟

푞′휋

All nodes in cycles are eventually popped

Proposition. If 푞 belongs to some cycle, then
푞 is eventually popped by the repeat loop.
Proof.

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at

time 푑[푞] there is white path from 푞
to 푞′

푟: successor of 푞′ in 휋
At time 푑 푞 we have 푑 푟 ≤ 푑 푞 ≤ 푑[푞].
By the White-Path Theorem 푞′ is a
descendant of 푞, and so (푞′, 푟) is explored
before 푞 is blackened.
So when (푞′, 푟) is explored, 푞 has not been
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been
popped before or it is popped now because
푑 푟 ≤ 푑[푞].

푞

푟

푞′휋

All nodes in cycles are eventually popped

Proposition. If 푞 belongs to some cycle, then
푞 is eventually popped by the repeat loop.
Proof.

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at

time 푑[푞] there is white path from 푞
to 푞′

푟: successor of 푞′ in 휋
At time 푑 푞 we have 푑 푟 ≤ 푑 푞 ≤ 푑[푞].
By the White-Path Theorem 푞′ is a
descendant of 푞, and so (푞′, 푟) is explored
before 푞 is blackened.
So when (푞′, 푟) is explored, 푞 has not been
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been
popped before or it is popped now because
푑 푟 ≤ 푑[푞].

푞

푟

푞′휋

All nodes in cycles are eventually popped

Proposition. If 푞 belongs to some cycle, then
푞 is eventually popped by the repeat loop.
Proof.

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at

time 푑[푞] there is white path from 푞
to 푞′

푟: successor of 푞′ in 휋
At time 푑 푞 we have 푑 푟 ≤ 푑 푞 ≤ 푑[푞].
By the White-Path Theorem 푞′ is a
descendant of 푞, and so (푞′, 푟) is explored
before 푞 is blackened.
So when (푞′, 푟) is explored, 푞 has not been
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been
popped in the repeat loop or it is popped
now because 푑 푟 ≤ 푑[푞].

푞

푟

푞′휋

All nodes in cycles are eventually popped

Proposition. If 푞 belongs to some cycle, then
푞 is eventually popped by the repeat loop.
Proof.

휋: cycle containing 푞
푞′: last successor of 푞 in 휋 such that at

time 푑[푞] there is white path from 푞
to 푞′

푟: successor of 푞′ in 휋
At time 푑 푞 we have 푑 푟 ≤ 푑 푞 ≤ 푑[푞].
By the White-Path Theorem 푞′ is a
descendant of 푞, and so (푞′, 푟) is explored
before 푞 is blackened.
So when (푞′, 푟) is explored, 푞 has not been
popped at line 13.
Since 푟 ↝ 푞′, either 푞 has already been
popped before or it is popped now because
푑 푟 ≤ 푑[푞].

This proof also shows optimality:
푞 is popped immediately after
the DFS explores all transitions of
휋, or earlier.
Since 휋 is an arbitrary cycle,
푂푛푒푆푡푎푐푘 is optimal.

푞

푟

푞′휋

All popped nodes belong to cycles

• To show that every node popped by the repeat loop belongs to
some cycle we need some concepts:
– strongly connected component (scc) of a graph
– dag of sccs of a graph
– root of an scc in a DFS.

All popped nodes belong to cycles

• To show that every node popped by the repeat loop belongs to
some cycle we need some concepts:
– strongly connected component (scc) of a graph
– dag of sccs of a graph
– root of an scc in a DFS.

All popped nodes belong to cycles

• To show that every node popped by the repeat loop belongs to
some cycle we need some concepts:
– strongly connected component (scc) of a graph
– dag of sccs of a graph
– root of an scc in a DFS.

All popped nodes belong to cycles
Invariant of OneStack: The repeat loop cannot remove a
grey root 휌 from the stack (remove = pop and don’t push
back), and can only pop states 푠 such that 푑 푠 ≥ 푑[휌].
Proof (sketch):

푡: time at which repeat loop starts because 푟 ↝ 푞
for some (푞, 푟).

휌: grey root at time 푡.
푟 and 푞 belong to the same scc.

휌′: root of this scc.
푞, 휌, and 휌′ are grey at time 푡, and 푞 ↝ 휌′ ↝ 푞.
By the grey-path theorem and since 휌 is root, we have

휌 푞 휌′ and so 푑 휌 ≤ 푑 휌′ ≤ 푑[푟].
So every state 푠 popped by the repeat loop satisfies
푑 푠 ≥ 푑[푞].
Further, if 휌 is popped, then it is pushed immediately
after at line 12.

All popped nodes belong to cycles
Invariant of OneStack: The repeat loop cannot remove a
grey root 휌 from the stack (remove = pop and don’t push
back), and can only pop states 푠 such that 푑 푠 ≥ 푑[휌].
Proof (sketch):

푡: time at which repeat loop starts because 푟 ↝ 푞
for some (푞, 푟).

휌: grey root at time 푡.
푟 and 푞 belong to the same scc.

휌′: root of this scc.
푞, 휌, and 휌′ are grey at time 푡, and 푞 ↝ 휌′ ↝ 푞.
By the grey-path theorem and since 휌 is root, we have

휌 푞 휌′ and so 푑 휌 ≤ 푑 휌′ ≤ 푑[푟].
So every state 푠 popped by the repeat loop satisfies
푑 푠 ≥ 푑[푞].
Further, if 휌 is popped, then it is pushed immediately
after at line 12.

All popped nodes belong to cycles
Invariant of OneStack: The repeat loop cannot remove a
grey root 휌 from the stack (remove = pop and don’t push
back), and can only pop states 푠 such that 푑 푠 ≥ 푑[휌].
Proof (sketch):

푡: time at which repeat loop starts because 푟 ↝ 푞
for some (푞, 푟).

휌: grey root at time 푡.
푟 and 푞 belong to the same scc.

휌′: root of this scc.
푞, 휌, and 휌′ are grey at time 푡, and 푞 ↝ 휌′ ↝ 푞.
By the grey-path theorem and since 휌 is root, we have

휌 푞 휌′ and so 푑 휌 ≤ 푑 휌′ ≤ 푑[푟].
So every state 푠 popped by the repeat loop satisfies
푑 푠 ≥ 푑[푞].
Further, if 휌 is popped, then it is pushed immediately
after at line 12.

All popped nodes belong to cycles
Invariant of OneStack: The repeat loop cannot remove a
grey root 휌 from the stack (remove = pop and don’t push
back), and can only pop states 푠 such that 푑 푠 ≥ 푑[휌].
Proof (sketch):

푡: time at which repeat loop starts because 푟 ↝ 푞
for some (푞, 푟).

휌: grey root at time 푡.
푟 and 푞 belong to the same scc.

휌′: root of this scc.
푞, 휌, and 휌′ are grey at time 푡, and 푞 ↝ 휌′ ↝ 푞.
By the grey-path theorem and since 휌 is root, we have

휌 푞 휌′ and so 푑 휌 ≤ 푑 휌′ ≤ 푑[푟].
So every state 푠 popped by the repeat loop satisfies
푑 푠 ≥ 푑[푞].
Further, if 휌 is popped, then it is pushed immediately
after at line 12.

All popped nodes belong to cycles
Invariant of OneStack: The repeat loop cannot remove a
grey root 휌 from the stack (remove = pop and don’t push
back), and can only pop states 푠 such that 푑 푠 ≥ 푑[휌].
Proof (sketch):

푡: time at which repeat loop starts because 푟 ↝ 푞
for some (푞, 푟).

휌: grey root at time 푡.
푟 and 푞 belong to the same scc.

휌′: root of this scc.
푞, 휌, and 휌′ are grey at time 푡, and 푞 ↝ 휌′ ↝ 푞.
By the grey-path theorem and since 휌 is root, we have
휌 ⇒ 푞 ⇒ 휌′ and so 푑 휌 ≤ 푑 휌′ ≤ 푑[푟].
So every state 푠 popped by the repeat loop satisfies
푑 푠 ≥ 푑[푞].
Further, if 휌 is popped, then it is pushed immediately
after at line 12.

All popped nodes belong to cycles
Invariant of OneStack: The repeat loop cannot remove a
grey root 휌 from the stack (remove = pop and don’t push
back), and can only pop states 푠 such that 푑 푠 ≥ 푑[휌].
Proof (sketch):

푡: time at which repeat loop starts because 푟 ↝ 푞
for some (푞, 푟).

휌: grey root at time 푡.
푟 and 푞 belong to the same scc.

휌′: root of this scc.
푞, 휌, and 휌′ are grey at time 푡, and 푞 ↝ 휌′ ↝ 푞.
By the grey-path theorem and since 휌 is root, we have
휌 ⇒ 푞 ⇒ 휌′ and so 푑 휌 ≤ 푑 휌′ ≤ 푑[푟].
So every state 푠 popped by the repeat loop satisfies
푑 푠 ≥ 푑[휌].
Further, if 휌 is popped, then it is pushed immediately
after at line 12.

All popped nodes belong to cycles
Proposition: Any state popped by the repeat loop
belongs to some cycle.
Proof (sketch):

푠: state popped by the repeat loop
푡: time at which the repeat loop starts popping

푞, 푟 : current transition (푟 ↝ 푞).
휌: root of the scc of 푟 and 푞

Observe: 푞, 푠,휌 are grey at time t
1. 푠 ⇒ 푞. Because 푠, 푞 grey at time 푡 and dfs(푞) is

being currently executed.
2. 휌 ⇒ 푠 . Since 휌, 푞 grey at time 푡 and 휌 is root we

have 휌 ⇒ 푞 , By 1) either 휌 ⇒ 푠 or 푠 ⇒ 휌. By the
invariant 푑 휌 ≤ 푑[푠] and so 휌 ⇒ 푠 .

By 1) and 2) we have 휌 ↝ 푠 ↝ 푞 ↝ 푟 ↝ 휌, and so 푠
belongs to a cycle.

All popped nodes belong to cycles
Proposition: Any state popped by the repeat loop
belongs to some cycle.
Proof (sketch):

푠: state popped by the repeat loop
푡: time at which the repeat loop starts popping

푞, 푟 : transition being currently explored (푟 ↝ 푞).
휌: root of the scc of 푟 and 푞

Observe: 푞, 푠,휌 are grey at time t
1. 푠 ⇒ 푞. Because 푠, 푞 grey at time 푡 and dfs(푞) is

being currently executed.
2. 휌 ⇒ 푠 . Since 휌, 푞 grey at time 푡 and 휌 is root we

have 휌 ⇒ 푞 , By 1) either 휌 ⇒ 푠 or 푠 ⇒ 휌. By the
invariant 푑 휌 ≤ 푑[푠] and so 휌 ⇒ 푠 .

By 1) and 2) we have 휌 ↝ 푠 ↝ 푞 ↝ 푟 ↝ 휌, and so 푠
belongs to a cycle.

All popped nodes belong to cycles
Proposition: Any state popped by the repeat loop
belongs to some cycle.
Proof (sketch):

푠: state popped by the repeat loop
푡: time at which the repeat loop starts popping

푞, 푟 : transition being currently explored (푟 ↝ 푞).
휌: root of the scc of 푟 and 푞

Observe: 푞, 푠,휌 are grey at time t
1. 푠 ⇒ 푞. Because at time 푡 states 푠, 푞 grey and 푞 is is

the last state of the grey path.
2. 휌 ⇒ 푠 . Since 휌, 푞 grey at time 푡 and 휌 is root we

have 휌 ⇒ 푞 , By 1) either 휌 ⇒ 푠 or 푠 ⇒ 휌. By the
invariant 푑 휌 ≤ 푑[푠] and so 휌 ⇒ 푠 .

By 1) and 2) we have 휌 ↝ 푠 ↝ 푞 ↝ 푟 ↝ 휌, and so 푠
belongs to a cycle.

All popped nodes belong to cycles
Proposition: Any state popped by the repeat loop
belongs to some cycle.
Proof (sketch):

푠: state popped by the repeat loop
푡: time at which the repeat loop starts popping

푞, 푟 : transition being currently explored (푟 ↝ 푞).
휌: root of the scc of 푟 and 푞

Observe: 푞, 푠,휌 are grey at time t
1. 푠 ⇒ 푞. Because at time 푡 states 푠, 푞 grey and 푞 is is

the last state of the grey path.
2. 휌 ⇒ 푠 . Since 휌, 푞 grey at time 푡 and 휌 is root we

have 휌 ⇒ 푞. By 1) either 휌 ⇒ 푠 or 푠 ⇒ 휌. By the
invariant 푑 휌 ≤ 푑[푠] and so 휌 ⇒ 푠 .

By 1) and 2) we have 휌 ↝ 푠 ↝ 푞 ↝ 푟 ↝ 휌, and so 푠
belongs to a cycle.

All popped nodes belong to cycles
Proposition: Any state popped by the repeat loop
belongs to some cycle.
Proof (sketch):

푠: state popped by the repeat loop
푡: time at which the repeat loop starts popping

푞, 푟 : transition being currently explored (푟 ↝ 푞).
휌: root of the scc of 푟 and 푞

Observe: 푞, 푠,휌 are grey at time t
1. 푠 ⇒ 푞. Because at time 푡 states 푠, 푞 grey and 푞 is is

the last state of the grey path.
2. 휌 ⇒ 푠 . Since 휌, 푞 grey at time 푡 and 휌 is root we

have 휌 ⇒ 푞. By 1) either 휌 ⇒ 푠 or 푠 ⇒ 휌. By the
invariant 푑 휌 ≤ 푑[푠] and so 휌 ⇒ 푠 .

By 1) and 2) we have 휌 ↝ 푠 ↝ 푞 ↝ 푟 ↝ 휌, and so 푠
belongs to a cycle.

Implementing the oracle

Assume OneStack calls the oracle for 푟 ↝ 푞. We
look for a condition that holds at that moment iff
푟 ↝ 푞 holds, and is easy to check.

Lemma. Assume OneStack is exploring (푞, 푟) and 푟
is already discovered. Let 푅 be the scc of 푟. Then
푟 ↝ 푞 iff some state of 푅 is not black.
Proof. (⇒) Then 푟, 푞 ∈ 푅 and 푞 is not black.
(⇐) At least one 푠 ∈ 푅 is grey. By the grey-path
theorem there is a grey path 푠 ⇒ 푞. So 푟 ↝ 푠 ⇒ 푞

Implementing the oracle

Assume OneStack calls the oracle for 푟 ↝ 푞. We
look for a condition that holds at that moment iff
푟 ↝ 푞 holds, and is easy to check.

Lemma. Assume OneStack is exploring (푞, 푟) and 푟
is already discovered. Let 푅 be the scc of 푟. Then
푟 ↝ 푞 iff some state of 푅 is not black.
Proof. (⇒) Then 푟, 푞 ∈ 푅 and 푞 is not black.
(⇐) At least one 푠 ∈ 푅 is grey. By the grey-path
theorem there is a grey path 푠 ⇒ 푞. So 푟 ↝ 푠 ⇒ 푞

Implementing the oracle

Assume OneStack calls the oracle for 푟 ↝ 푞. We
look for a condition that holds at that moment iff
푟 ↝ 푞 holds, and is easy to check.

Lemma. Assume OneStack is exploring (푞, 푟) and 푟
is already discovered. Let 푅 be the scc of 푟. Then
푟 ↝ 푞 iff some state of 푅 is not black.
Proof. (⇒) Then 푟, 푞 ∈ 푅 and 푞 is not black.
(⇐) At least one 푠 ∈ 푅 is grey. By the grey-path
theorem there is a grey path 푠 ⇒ 푞. So 푟 ↝ 푠 ⇒ 푞.

Implementing the oracle

• Idea: maintain a set 푉 of active states whose sccs have not
yet been completely explored (not yet black)

• Since the root is the first state of an sc to be greyed and the
last to be blackened, we can proceed as follows:
– Add states to 푉 when they are discovered.
– Remove states from 푉 when the root of their sccs is blackened.

• So 푉can be implemented as a stack: when a root 휌 is
blackened, pop from 푉until 휌 is popped.

• Problem to solve: when blackening a node, decide if it is a
root.

Implementing the oracle

• Idea: maintain a set 푉 of active states whose sccs have not
yet been completely explored (not yet black)

• Since the root is the first state of an scc to be greyed and
the last to be blackened, we can proceed as follows:
– Add states to 푉 when they are discovered.
– Remove states from 푉 when the root of their sccs is blackened.

• So 푉can be implemented as a stack: when a root 휌 is
blackened, pop from 푉until 휌 is popped.

• Problem to solve: when blackening a node, decide if it is a
root.

Implementing the oracle

• Idea: maintain a set 푉 of active states whose sccs have not
yet been completely explored (not yet black)

• Since the root is the first state of an scc to be greyed and
the last to be blackened, we can proceed as follows:
– Add states to 푉 when they are discovered.
– Remove states from 푉 when the root of their sccs is blackened.

• So 푉 can be implemented as a second stack: when a root 휌
is blackened, pop from 푉 until 휌 is popped.

• Problem to solve: when blackening a node, decide if it is a
root.

Implementing the oracle
• Idea: maintain a set 푉 of active states whose sccs have not yet

been completely explored (not yet black)

• Since the root is the first state of an scc to be greyed and the last
to be blackened, we can proceed as follows:
– Add states to 푉 when they are discovered.
– Remove states from 푉 when the root of their sccs is blackened.

So 푉 can be implemented as a second stack maintained as follows:

– when a state is greyed, it is pushed into 푉;

– when a root is blackened, all states of 푉 above it (including the
root) are popped.

• Problem to solve: when blackening a node, decide if it is a root.

Implementing the oracle
Lemma. At line 13, 푞 is a root iff top(퐶) = 푞.
Proof. (⇒) If 푞 is root, by the invariant it still
belongs to 퐶 after the for-loop, and so top(퐶) = 푞.
(⇐) 휌: root of scc of 푞, different from 푞

휋: path from 휌 to 푞
푟: first state of 휋 s.t. 푑 푟 < 푑[푞]
푞′: successor of 푟 in 휋

The white-path theorem gives 푞 ⇒ 푞′.
So when 푞′, 푟 is explored 푞 is not yet black, and
all 푠 s.t. 푑 푠 > 푑[푟] are popped from 퐶 and not
pushed back.
So either 푞 has already been popped, or it is
popped now.
Since 푞 not yet black, at line 13 푞 is not in 퐶, and so
top 퐶 ≠ 푞.

Implementing the oracle
Lemma. At line 13, 푞 is a root iff top(퐶) = 푞.
Proof. (⇒) If 푞 is root, by the invariant it still
belongs to 퐶 after the for-loop, and so top(퐶) = 푞.
(⇐) 휌: root of scc of 푞, different from 푞

휋: path from 휌 to 푞
푟: first state of 휋 s.t. 푑 푟 < 푑[푞]
푞′: successor of 푟 in 휋

The white-path theorem gives 푞 ⇒ 푞′.
So when 푞′, 푟 is explored 푞 is not yet black, and
all 푠 s.t. 푑 푠 > 푑[푟] are popped from 퐶 and not
pushed back.
So either 푞 has already been popped, or it is
popped now.
Since 푞 not yet black, at line 13 푞 is not in 퐶, and so
top 퐶 ≠ 푞.

Implementing the oracle
Lemma. At line 13, 푞 is a root iff top(퐶) = 푞.
Proof. (⇒) If 푞 is root, by the invariant it still
belongs to 퐶 after the for-loop, and so top(퐶) = 푞.
(⇐) 휌: root of scc of 푞, different from 푞

휋: path from 휌 to 푞
푟: first state of 휋 s.t. 푑 푟 < 푑[푞]
푞′: successor of 푟 in 휋

The white-path theorem gives 푞 ⇒ 푞′.
So when 푞′, 푟 is explored 푞 is not yet black, and
all 푠 s.t. 푑 푠 > 푑[푟] are popped from 퐶 and not
pushed back.
So either 푞 has already been popped, or it is
popped now.
Since 푞 not yet black, at line 13 푞 is not in 퐶, and so
top 퐶 ≠ 푞.

Implementing the oracle
Lemma. At line 13, 푞 is a root iff top(퐶) = 푞.
Proof. (⇒) If 푞 is root, by the invariant it still
belongs to 퐶 after the for-loop, and so top(퐶) = 푞.
(⇐) 휌: root of scc of 푞, different from 푞

휋: path from 휌 to 푞
푟: first state of 휋 s.t. 푑 푟 < 푑[푞]
푞′: successor of 푟 in 휋

The white-path theorem gives 푞 ⇒ 푞′.
So when 푞′, 푟 is explored 푞 is not yet black, and
all 푠 s.t. 푑 푠 > 푑[푟] are popped from 퐶 and not
pushed back.
So either 푞 has already been popped, or it is
popped now.
Since 푞 not yet black, at line 13 푞 is not in 퐶, and so
top 퐶 ≠ 푞.

Implementing the oracle
Lemma. At line 13, 푞 is a root iff top(퐶) = 푞.
Proof. (⇒) If 푞 is root, by the invariant it still
belongs to 퐶 after the for-loop, and so top(퐶) = 푞.
(⇐) 휌: root of scc of 푞, different from 푞

휋: path from 휌 to 푞
푟: first state of 휋 s.t. 푑 푟 < 푑[푞]
푞′: successor of 푟 in 휋

The white-path theorem gives 푞 ⇒ 푞′.
So when 푞′, 푟 is explored 푞 is not yet black, and
all 푠 s.t. 푑 푠 > 푑[푟] are popped from 퐶 by the
repeat loop and not pushed back.
So either 푞 has already been popped by the repeat
loop, or it is popped now.
Since 푞 not yet black, at line 13 푞 is not in 퐶, and so
top 퐶 ≠ 푞.

Implementing the oracle
Lemma. At line 13, 푞 is a root iff top(퐶) = 푞.
Proof. (⇒) If 푞 is root, by the invariant it still
belongs to 퐶 after the for-loop, and so top(퐶) = 푞.
(⇐) 휌: root of scc of 푞, different from 푞

휋: path from 휌 to 푞
푟: first state of 휋 s.t. 푑 푟 < 푑[푞]
푞′: successor of 푟 in 휋

The white-path theorem gives 푞 ⇒ 푞′.
So when 푞′, 푟 is explored 푞 is not yet black, and
all 푠 s.t. 푑 푠 > 푑[푟] are popped from 퐶 by the
repeat loop and not pushed back.
So either 푞 has already been popped by the repeat
loop, or it is popped now.
Since 푞 not yet black, at line 13 푞 is not in 퐶, and so
top 퐶 ≠ 푞.

Implementing the oracle

Implementing the oracle

Implementing the oracle

Extension to NGAs

