
Implementing boolean
operations for Büchi automata

Intersection of NBAs

• The algorithm for NFAs does not work ...

Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [ܣଵ,ܣଶ].
2. Redirect transitions of the first copy leaving ܨଵto the

second copy.
3. Redirect transitions of the second copy leaving ܨଶto the

second copy.
4. Set ܨ to the set ܨଵ in the first copy.

Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [ܣଵ,ܣଶ].
2. Redirect transitions of the first copy leaving ܨଵto the

second copy.
3. Redirect transitions of the second copy leaving ܨଶto the

second copy.
4. Set ܨ to the set ܨଵ in the first copy.

Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [ܣଵ,ܣଶ].
2. Redirect transitions of the first copy leaving ܨଵto the

second copy.
3. Redirect transitions of the second copy leaving ܨଶto the

first copy.
4. Set ܨ to the set ܨଵ in the first copy.

Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [ܣଵ,ܣଶ].
2. Redirect transitions of the first copy leaving ܨଵto the

second copy.
3. Redirect transitions of the second copy leaving ܨଶto the

first copy.
4. Set ܨ to the set ܨଵ in the first copy.

Special cases/improvements

• If all states of at least one of ܣଵ and ܣଶ are
accepting, the algorithm for NFAs works.

• Intersection of NBAs ܣଵ,ܣଶ, … ௞ܣ,
– Do NOT apply the algorithm for two NBAs (݇ − 1)

times.
– Proceed instead as in the translation

NGA ⇒ NBA: take ݇ copies of [ܣଵ,ܣଶ, … [௞ܣ,
(݇݊ଵ …݊௞ states instead of 2௞݊ଵ …݊௞)

Complement

• Main result proved by Büchi: NBAs are closed
under complement.

• Many later improvements in recent years.
• Construction radically different from the one

for NFAs.

Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs
also fails.

Solution

• Extend the idea used to determinize co-Büchi
automata with a new component.

• Recall: a NBA accepts a word ݓ iff some path of
݀ܽ݃ ݓ visits final states infinitely often.

• Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

Running example

Rankings
• Mappings that associate to every node of
(ݓ)݃ܽ݀ a rank (a natural number) such that
– ranks never increase along a path, and
– ranks of accepting nodes are even.

Odd rankings

• A ranking is odd if every infinite path of
݀ܽ݃ ݓ visits nodes of odd rank i.o.

Prop.: no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

݀ܽ݃ ݓ has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable
rank.
(⇐): The stable rank of every path is odd. Since accepting
nodes have even rank, no path visits accepting nodes i.o.
(⇒): We construct a ranking satisfying the conditions.
Give each accepting node ݍ, ݈ rank 2݇, where ݇ is the
maximal number of accepting nodes in a path starting at
,ݍ ݈ .

Give a non-accepting node ,ݍ ݈ rank 2݇ + 1, where 2k is
the maximal even rank among its descendants.

• Goal: ܣ rejects ݓ
iff

݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

• Idea: design ̅ܣ so that
 its runs on ݓ are the rankings of ݀ܽ݃(ݓ), and
 its acceptings runs on ݓ are the odd rankings of

݀ܽ݃ ݓ .

Representing rankings

2
⊥

௔
→ 1

2
௕
→ 1

⊥
௔
→ 1

0
௔
→ 1

0 …

1
⊥

௔
→ 1

0
௕
→ 0

⊥
௔
→ 0

0
௕
→ 0

⊥ …

Representing rankings

1
⊥

௔
→ 1

0
௕
→ 0

⊥
௔
→ 0

0
௕
→ 0

⊥ …

We can determine if
݊ଵ
݊ଶ

௟
→ ݊ଵᇱ

݊ଶᇱ
may appear in a

ranking by just looking at ݊ଵ,݊ଶ,݊ଵᇱ ,݊ଶᇱ and ݈ : ranks
should not increase.

Representing rankings

• For a two-state ܣ (more states analogous):

– States: all
݊ଵ
݊ଶ where accepting states get even rank

– Initial states: all states of the form
݊ଵ
⊥

– Transitions: all
݊ଵ
݊ଶ

௔
→ ݊ଵᇱ

݊ଶᇱ
s.t . ranks don´t increase

• The runs of the automaton on a word ݓ correspond
to all the rankings of ݀ܽ݃ ݓ .

• Observe: ̅ܣ is a NBA even if ܣ is a DBA, because
there are many rankings for the same word.

First draft for ̅ܣ

Problems to solve

• How to choose the accepting states?
– They should be chosen so that a run is accepted iff

its corresponding ranking is odd.

• Potentially infinitely many states (because
rankings can contain arbitrarily large numbers)

Solving the first problem

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the

ranking such that no state of the level owes a visit
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely
many breakpoints.

– We enrich the state with a set of owing states, and
choose the accepting states as those in which the
set is empty.

Owing states

2
⊥

௔
→ 1

2
௕
→ 1

⊥
௔
→ 1

0
௔
→ 1

0 …

{଴ݍ} {ଵݍ} ∅ {ଵݍ} ∅

Owing states

1
⊥

௔
→ 1

0
௕
→ 0

⊥
௔
→ 0

0
௕
→ 0

⊥ …

∅ {ଵݍ} {଴ݍ} ,଴ݍ} {ଵݍ {଴ݍ}

• For a two-state ܣ (the case of more states is
analogous):

– States: all pairs
݊ଵ
݊ଶ ,ܱ where accepting states get

even rank, and ܱ is set of owing states (of even rank)

– Initial states: all
݊ଵ
⊥ , {଴ݍ} where ݊ଵ even if ݍ଴

accepting.

– Transitions: all
݊ଵ
݊ଶ

,ܱ
௔
→ ݊ଵᇱ

݊ଶᇱ
,ܱ′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
݊ଵ
݊ଶ ,∅

Second draft for ̅ܣ

• The runs of ̅ܣ on a word ݓ correspond to all
the rankings of ݀ܽ݃ ݓ .

• The accepting runs of ̅ܣ on a word ݓ
correspond to all the odd rankings of
݀ܽ݃ ݓ .

• Therefore: ܮ ܣ̅ = (ܣ)ܮ

Second draft for ̅ܣ

Solving the second problem

Proposition: If ݓ is rejected by ܣ, then ݀ܽ݃(ݓ) has an odd
ranking in which ranks are taken from the range 0,2݊ ,
where ݊ is the number of states of ܣ. Further, the initial
node gets rank 2݊.
Proof: We construct such a ranking as follows:

• we proceed in ݊ + 1 rounds (from round 0 to round ݊), each
round with two steps ݇. 0 and ݇. 1 with the exception of round
݊ which only has ݊. 0

• each step removes a set of nodes together with all its
descendants.

• the nodes removed at step ݅. ݆ get rank 2݅ + ݆
• the rank of the initial node is increased to 2݊ if necessary

(preserves the properties of rankings).

The steps

• Step ݅. 0 : remove all nodes having only finitely
many successors.

• Step ݅. 1 : remove nodes that are non-accepting
and have no accepting descendants

• This immediately guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can

only be removed at step ݅. 0
• It remains to prove: no nodes left after ݊ + 1

rounds .

• Step ݅. 0 : remove all nodes having
only finitely many successors.

• Step ݅. 1 : remove nodes that are
non-accepting and have no
accepting descendants

• To prove: no nodes left after n rounds .
• Each level of a dag has a width

• We define the width of a dag as the largest level
width that appears infinitely often.

• Each round decreases the width of the dag by at
least 1.

• Since the initial width is at most ݊ after at most ݊
rounds the width is 0, and then step ݊. 0 removes all
nodes.

• For a two-state ܣ (the case of more -or fewer-
states is analogous):

– States: all pairs
݊ଵ
݊ଶ ,ܱ where 0 ≤ ݊ଵ, ݊ଶ ≤ 2݊,

ܱ set of owing states, and accepting states get even
rank

– Initial state: 2݊
⊥ , {଴ݍ}

– Transitions: all
݊ଵ
݊ଶ ,ܱ

௔
→ ݊ଵᇱ

݊ଶᇱ
,ܱ′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
݊ଵ
݊ଶ ,∅

Final ̅ܣ

An example

• We construct the complements of
ଵܣ = (ݍ , ܽ , ,ߜ ݍ , ݍ) with ߜ ܽ,ݍ = {ݍ}
ଶܣ = (ݍ , ܽ , ,ߜ ݍ ,∅) with ߜ ܽ,ݍ = {ݍ}

• States of ܣଵ:
0,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• States of ܣଶ:
0,∅ , 1,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• Initial state of ܣଵand ܣଶ: 2, {ݍ}

An example

• Transitions of ܣଵ:
2, {ݍ}

௔
→ 2, {ݍ} , 2, {ݍ}

௔
→ 0, {ݍ} , 0, {ݍ}

௔
→ 0, {ݍ}

• Transitions of ܣଶ:
2, {ݍ}

௔
→ 2, {ݍ} , 2, {ݍ}

௔
→ 1,∅ , 2, {ݍ}

௔
→ 0, {ݍ} ,

1,∅
௔
→ 1,∅ , 1,∅

௔
→ 0, {ݍ} ,

0, {ݍ}
௔
→ 0, {ݍ}

• Final states of ܣଵ: 0,∅ , 2,∅ (unreachable)
• Final states of ܣଶ: 0,∅ , 1,∅ , 2,∅ (only 1,∅ is

reachable)

Complexity

• A state consists of a level of a ranking and a
set of owing states.

• A level assigns to each state a number of
[0,2݊] or the symbol ⊥.

• So the complement NBA has at most
2݊ + 2 ௡ ȉ 2௡ ∈ ݊ை ௡ = 2ை ௡ ୪୭୥ ௡ states.

• Compare with 2௡ for the NFA case.
• We show that the log ݊ factor is unavoidable.

We define a family ܮ௡ ௡ஹଵ of ߱-languages s.t.
– ௡ܮ is accepted by a NBA with ݊ + 2 states.
– Every NBA accepting ܮ௡ has at least ݊! ∈ 2஀ ௡ ୪୭୥ ௡

states.

• The alphabet of ܮ௡ is Σ௡ = {1,2, … ,݊, #}.
• Assign to a word ݓ ∈ Σ௡ a graph (ݓ)ܩ as

follows:
– Vertices: the numbers 1,2, … ,݊ .
– Edges: there is an edge ݅ → ݆ iff ݓ contains infinitely

many occurrences of ݆݅.
• Define: ݓ ∈ ௡ܮ iff (ݓ)ܩ has a cycle.

• ௡ܮ is accepted by a NBA with ݊ + 2 states.

Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Let ߬ denote a permutation of 1,2, … ,݊ .
• We have:

a) For every ߬, the word ߬ # ఠ belongs to ௡ܮ
(i.e., its graph contains no cycle).

b) For every two distinct ߬ଵ, ߬ଶ, every word
containing inf. many occurrences of ߬ଵ and
inf. many occurrences of ߬ଶ belongs to ܮ௡.

Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Assume ܣ recognizes ௡ܮ and let ߬ଵ, ߬ଶ distinct.

By (a), ܣ has runs ߩଵ, # ଶ accepting ߬ଵߩ ఠ,
߬ଶ # ఠ. The sets of accepting states visited

i.o. by ߩଵ, ଶߩ are disjoint.
– Otherwise we can ``interleave‘‘ߩଵ,ߩଶ to yield an

acepting run for a word with inf. many occurrences
of ߬ଵ, ߬ଶ , contradicting (b).

• So ܣ has at least one accepting state for each
permutation, and so at least ݊! states.

