
Implementing boolean 
operations for Büchi automata 



Intersection of NBAs

• The algorithm for NFAs does not work ...



Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [ܣଵ,ܣଶ].
2. Redirect transitions of the first copy leaving ܨଵto the 

second copy.
3. Redirect transitions of the second copy leaving ܨଶto the 

second copy.
4. Set ܨ to the set ܨଵ in the first copy.
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Special cases/improvements

• If all states of at least one of ܣଵ and ܣଶ are 
accepting, the algorithm for NFAs works.

• Intersection of NBAs ܣଵ,ܣଶ, … ௞ܣ,
– Do NOT apply the algorithm for two NBAs (݇ − 1)

times. 
– Proceed instead as in the translation 

NGA ⇒ NBA: take ݇ copies of [ܣଵ,ܣଶ, … [௞ܣ,
(݇݊ଵ  …݊௞ states instead of 2௞݊ଵ  …݊௞)



Complement

• Main result proved by Büchi:  NBAs are closed 
under complement.

• Many later improvements in recent years.
• Construction radically different from the one 

for NFAs.



Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs 
also fails.



Solution

• Extend the idea used to determinize co-Büchi 
automata with a new component.

• Recall: a NBA accepts a word ݓ iff some path of 
݀ܽ݃ ݓ visits final states infinitely often.

• Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ



Running example



Rankings
• Mappings that associate to every node of 
(ݓ)݃ܽ݀ a rank (a natural number) such that
– ranks never increase along a path, and
– ranks of accepting nodes are even. 



Odd rankings

• A ranking is odd if every infinite path of 
݀ܽ݃ ݓ visits nodes of odd rank i.o. 



Prop.: no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff 

݀ܽ݃ ݓ has an odd ranking

Proof:  Ranks along infinite paths eventually reach a stable 
rank.
(⇐): The stable rank of every path is odd. Since accepting 
nodes have even rank, no path visits accepting nodes i.o.
(⇒): We construct a ranking satisfying the conditions.
Give each accepting node ݍ, ݈  rank 2݇, where ݇ is the 
maximal number of accepting nodes in a path starting at 
,ݍ ݈ .

Give a non-accepting node ,ݍ ݈ rank 2݇ + 1, where 2k is 
the maximal even rank among its descendants.



• Goal: ܣ rejects ݓ
iff

݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

• Idea: design ̅ܣ so that
 its runs on ݓ are the rankings of ݀ܽ݃(ݓ), and
 its acceptings runs on ݓ are the odd rankings of 

݀ܽ݃ ݓ .



Representing rankings
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We can determine if
݊ଵ
݊ଶ
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may appear in a 

ranking by just looking at ݊ଵ,݊ଶ,݊ଵᇱ ,݊ଶᇱ and ݈ : ranks 
should not increase.

Representing rankings



• For a two-state ܣ (more states analogous): 

– States: all 
݊ଵ
݊ଶ where accepting states get even rank

– Initial states: all states of the form  
݊ଵ
⊥

– Transitions: all 
݊ଵ
݊ଶ

௔
→ ݊ଵᇱ

݊ଶᇱ
s.t . ranks don´t increase

• The runs of the automaton on a word ݓ correspond 
to all the rankings of ݀ܽ݃ ݓ .

• Observe: ̅ܣ is a NBA even if ܣ is a DBA, because 
there are many rankings for the same word.

First draft for ̅ܣ



Problems to solve

• How to choose the accepting states?
– They should be chosen so that a run is accepted iff 

its corresponding  ranking is odd.

• Potentially infinitely many states (because 
rankings can contain arbitrarily large numbers)



Solving the first problem

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the 

ranking such that no state of the level owes a visit 
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely 
many breakpoints.

– We enrich the state with a set of owing states, and 
choose the accepting states as those in which the 
set is empty. 



Owing states
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• For a two-state ܣ (the case of more states is 
analogous): 

– States: all pairs  
݊ଵ
݊ଶ ,ܱ where accepting states get 

even rank, and  ܱ is set of owing states (of even rank)

– Initial states: all  
݊ଵ
⊥ , {଴ݍ} where ݊ଵ even if ݍ଴

accepting.

– Transitions: all 
݊ଵ
݊ଶ

,ܱ 
௔
→ ݊ଵᇱ

݊ଶᇱ
,ܱ′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
݊ଵ
݊ଶ ,∅

Second draft for ̅ܣ



• The runs of ̅ܣ on a word ݓ correspond to all 
the rankings of ݀ܽ݃ ݓ .

• The accepting runs of ̅ܣ on a word ݓ
correspond to all the odd rankings of 
݀ܽ݃ ݓ .

• Therefore:  ܮ ܣ̅ =   (ܣ)ܮ

Second draft for ̅ܣ



Solving the second problem

Proposition: If ݓ is rejected by ܣ, then ݀ܽ݃(ݓ) has an odd 
ranking in which ranks are taken from the range 0,2݊ , 
where ݊ is the number of states of ܣ.  Further, the initial 
node gets rank 2݊.
Proof: We construct such a ranking as follows:

• we proceed in ݊ + 1 rounds (from round 0 to round ݊), each 
round with two steps ݇. 0 and ݇. 1 with the exception of round 
݊ which only has ݊. 0

• each step removes a set of nodes together with all its  
descendants. 

• the nodes removed at step ݅. ݆ get rank 2݅ + ݆
• the rank of the initial node is increased to 2݊ if necessary 

(preserves the properties of rankings).



The steps

• Step ݅. 0 : remove all nodes having only finitely 
many successors.

• Step ݅. 1 : remove nodes that are non-accepting 
and have no accepting descendants 

• This immediately guarantees : 
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can 

only be removed at step ݅. 0
• It remains to prove: no nodes left after ݊ + 1

rounds .



• Step ݅. 0 : remove all nodes having 
only finitely many successors.

• Step ݅. 1 : remove nodes that are 
non-accepting and have no 
accepting descendants



• To prove: no nodes left after n rounds .
• Each level of a dag has a width

• We define the width of a dag as the largest level 
width that appears infinitely often.

• Each round decreases the width of the dag by at 
least 1.

• Since the initial width is at most ݊ after at most ݊
rounds the width is 0, and then step ݊. 0 removes all 
nodes.



• For a two-state ܣ (the case of more -or fewer-
states is analogous): 

– States: all pairs  
݊ଵ
݊ଶ ,ܱ where 0 ≤ ݊ଵ, ݊ଶ ≤ 2݊, 

ܱ set of owing states, and accepting states get even 
rank

– Initial state: 2݊
⊥ , {଴ݍ}

– Transitions: all  
݊ଵ
݊ଶ ,ܱ 

௔
→ ݊ଵᇱ

݊ଶᇱ
,ܱ′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
݊ଵ
݊ଶ ,∅

Final ̅ܣ



An example

• We construct the complements of 
ଵܣ = ( ݍ , ܽ , ,ߜ ݍ , ݍ ) with ߜ ܽ,ݍ = {ݍ}
ଶܣ = ( ݍ , ܽ , ,ߜ ݍ ,∅) with ߜ ܽ,ݍ = {ݍ}

• States of ܣଵ:
0,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• States of ܣଶ:
0,∅ , 1,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• Initial state of ܣଵand ܣଶ: 2, {ݍ}



An example

• Transitions of ܣଵ:
2, {ݍ}

௔
→ 2, {ݍ}  , 2, {ݍ}

௔
→ 0, {ݍ} , 0, {ݍ}

௔
→ 0, {ݍ}

• Transitions of ܣଶ:
2, {ݍ}

௔
→ 2, {ݍ}  , 2, {ݍ}

௔
→ 1,∅ , 2, {ݍ}

௔
→ 0, {ݍ} , 

1,∅
௔
→ 1,∅ , 1,∅

௔
→ 0, {ݍ} ,

0, {ݍ}
௔
→ 0, {ݍ}

• Final states of ܣଵ: 0,∅ , 2,∅ (unreachable)
• Final states of ܣଶ: 0,∅ , 1,∅ , 2,∅ (only 1,∅ is 

reachable)





Complexity

• A state consists of a level of a ranking and a 
set of owing states.

• A level assigns to each state a number of
[0,2݊] or the symbol ⊥.

• So the complement NBA has at most 
2݊ + 2 ௡ ȉ 2௡ ∈ ݊ை ௡ = 2ை ௡ ୪୭୥ ௡ states. 

• Compare with 2௡ for the NFA case.
• We show that the log ݊ factor is unavoidable.



We define a family ܮ௡ ௡ஹଵ of ߱-languages s.t.
– ௡ܮ is accepted by a NBA with ݊ + 2 states.
– Every NBA accepting ܮ௡ has at least ݊! ∈ 2஀ ௡ ୪୭୥ ௡

states.

• The alphabet of ܮ௡ is Σ௡ = {1,2, … ,݊, #}.
• Assign to a word ݓ ∈ Σ௡ a graph (ݓ)ܩ as 

follows:
– Vertices: the numbers 1,2, … ,݊ .
– Edges: there is an edge ݅ → ݆ iff ݓ contains infinitely 

many occurrences of  ݆݅.
• Define: ݓ ∈ ௡ܮ iff (ݓ)ܩ has a cycle.



• ௡ܮ is accepted by a NBA with ݊ + 2 states.



Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Let ߬ denote a permutation of 1,2, … ,݊ . 
• We have:

a) For every ߬, the word ߬ # ఠ belongs to ௡ܮ
(i.e., its graph contains no cycle).

b) For every two distinct  ߬ଵ, ߬ଶ, every word 
containing  inf. many occurrences of ߬ଵ and
inf. many occurrences of ߬ଶ belongs to ܮ௡.



Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Assume ܣ recognizes ௡ܮ and let ߬ଵ, ߬ଶ distinct. 

By (a), ܣ has runs ߩଵ, # ଶ accepting ߬ଵߩ ఠ, 
߬ଶ # ఠ.  The sets of accepting states visited 

i.o. by ߩଵ, ଶߩ are disjoint.
– Otherwise we can ``interleave‘‘ߩଵ,ߩଶ to yield an 

acepting run for a word with inf. many occurrences 
of ߬ଵ, ߬ଶ , contradicting (b).

• So ܣ has at least one accepting state for each 
permutation, and so at least ݊! states.


