Implementing boolean operations for Büchi automata

Intersection of NBAs

- The algorithm for NFAs does not work ...

Solution

Apply the same idea as in the conversion NGA \rightarrow NBA

1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.

Solution

Apply the same idea as in the conversion NGA \rightarrow NBA

1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.
2. Redirect transitions of the first copy leaving F_{1} to the second copy.

Solution

Apply the same idea as in the conversion NGA \rightarrow NBA

1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.
2. Redirect transitions of the first copy leaving F_{1} to the second copy.
3. Redirect transitions of the second copy leaving F_{2} to the first copy.

Solution

Apply the same idea as in the conversion NGA \rightarrow NBA

1. Take two copies of the pairing $\left[A_{1}, A_{2}\right]$.
2. Redirect transitions of the first copy leaving F_{1} to the second copy.
3. Redirect transitions of the second copy leaving F_{2} to the first copy.
4. Set F to the set F_{1} in the first copy.

IntersNBA $\left(A_{1}, A_{2}\right)$
Input: NBAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$
Output: NBA $A_{1} \cap_{\omega} A_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $L_{\omega}\left(A_{1} \cap_{\omega} A_{2}\right)=L_{\omega}\left(A_{1}\right) \cap L_{\omega}\left(A_{2}\right)$

```
Q,\delta,F\leftarrow\emptyset
q0}\leftarrow[\mp@subsup{q}{01}{},\mp@subsup{q}{02}{},1
W\leftarrow{[\mp@subsup{q}{01}{},\mp@subsup{q}{02}{},1]}
while W\not=\emptyset do 10
    pick [ }\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},i]\mathrm{ from W
    add [\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},i] to Q'
    if }\mp@subsup{q}{1}{}\in\mp@subsup{F}{1}{}\mathrm{ and }i=1\mathrm{ then add [q},\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},1]\mathrm{ to }\mp@subsup{F}{}{\prime}1
```12
```

    for all \(a \in \Sigma\) do
    for all \(q_{1}^{\prime} \in \delta_{1}\left(q_{1}, a\right), q_{2}^{\prime} \in \delta\left(q_{2}, a\right)\) do
        if \(i=1\) and \(q_{1} \notin F_{1}\) then
        add \(\left(\left[q_{1}, q_{2}, 1\right], a,\left[q_{1}^{\prime}, q_{2}^{\prime}, 1\right]\right)\) to \(\delta\)
        if \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 1\right] \notin Q^{\prime}\) then add \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 1\right]\) to \(W\)
        if \(i=1\) and \(q_{1} \in F_{1}\) then
            add \(\left(\left[q_{1}, q_{2}, 1\right], a,\left[q_{1}^{\prime}, q_{2}^{\prime}, 2\right]\right)\) to \(\delta\)
            if \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 2\right] \notin Q^{\prime}\) then add \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 2\right]\) to \(W\)
        if \(i=2\) and \(q_{2} \notin F_{2}\) then
        add \(\left(\left[q_{1}, q_{2}, 2\right], a,\left[q_{1}^{\prime}, q_{2}^{\prime}, 2\right]\right)\) to \(\delta\)
        if \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 2\right] \notin Q^{\prime}\) then add \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 2\right]\) to \(W\)
        if \(i=2\) and \(q_{2} \in F_{2}\) then
            add \(\left(\left[q_{1}, q_{2}, 2\right], a,\left[q_{1}^{\prime}, q_{2}^{\prime}, 1\right]\right)\) to \(\delta\)
            if \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 1\right] \notin Q^{\prime}\) then add \(\left[q_{1}^{\prime}, q_{2}^{\prime}, 1\right]\) to \(W\)
    return $\left(Q, \Sigma, \delta, q_{0}, F\right)$

```

\section*{Special cases/improvements}
- If all states of at least one of \(A_{1}\) and \(A_{2}\) are accepting, the algorithm for NFAs works.
- Intersection of NBAs \(A_{1}, A_{2}, \ldots, A_{k}\)
- Do NOT apply the algorithm for two NBAs \((k-1)\) times.
- Proceed instead as in the translation NGA \(\Rightarrow\) NBA: take \(k\) copies of \(\left[A_{1}, A_{2}, \ldots, A_{k}\right]\)
(kn \(\quad \ldots n_{k}\) states instead of \(2^{k} n_{1} \ldots n_{k}\))

\section*{Complement}
- M ain result proved by Büchi: NBAs are closed under complement.
- M any later improvements in recent years.
- Construction radically different from the one for NFAs.

\section*{Problems}
- The powerset construction does not work.

- Exchanging final and non-final states in DBAs also fails.

\section*{Solution}
- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word \(w\) iff some path of \(\operatorname{dag}(w)\) visits final states infinitely often.
- Goal: given NBA \(A\), construct NBA \(\bar{A}\) such that:

\section*{\(A\) rejects w \\ iff}
no path of \(\operatorname{dag}(w)\) visits accepting states of \(A\) i.o.
iff
some run of \(\bar{A}\) visits accepting states of \(\bar{A}\) i.o.
iff
\(\bar{A}\) accepts \(w\)

\section*{Running example}

\section*{Rankings}
- M appings that associate to every node of \(\operatorname{dag}(w)\) a rank (a natural number) such that
- ranks never increase along a path, and
- ranks of accepting nodes are even.

\section*{Odd rankings}
- A ranking is odd if every infinite path of \(\operatorname{dag}(w)\) visits nodes of odd rank i.o.

Prop.: no path of \(\operatorname{dag}(w)\) visits accepting states of \(A\) i.o.

\section*{dag(w) has an odd ranking}

Proof: Ranks along infinite paths eventually reach a stable rank.
\((\Leftarrow)\) : The stable rank of every path is odd. Since accepting nodes have even rank, no path visits accepting nodes i.o. \((\Rightarrow)\) : We construct a ranking satisfying the conditions.
Give each accepting node \(\langle q, l\rangle\) rank \(2 k\), where \(k\) is the maximal number of accepting nodes in a path starting at \(\langle q, l\rangle\).
Give a non-accepting node \(\langle q, l\rangle\) rank \(2 k+1\), where 2 k is the maximal even rank among its descendants.
- Goal:

\section*{\(A\) rejects w iff \\ \(\operatorname{dag}(w)\) has an odd ranking iff \\ some run of \(\bar{A}\) visits accepting states of \(\bar{A}\) i.o. iff \\ \(\bar{A}\) accepts \(w\)}
- Idea: design \(\bar{A}\) so that
- its runs on \(w\) are the rankings of \(\operatorname{dag}(w)\), and
- its acceptings runs on \(w\) are the odd rankings of \(\operatorname{dag}(w)\).

\section*{Representing rankings}

\[
\left[\begin{array}{l}
2 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{a} \rightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right] \ldots
\]

\section*{Representing rankings}

\[
\left[\begin{array}{l}
1 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \ldots
\]

\section*{Representing rankings}

\[
\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{a} \rightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{b}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right]_{0}^{b} \xrightarrow{b}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cdots
\]

We can determine if \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right] \xrightarrow{l}\left[\begin{array}{l}n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right]\) may appear in a ranking by just looking at \(n_{1}, n_{2}, n_{1}^{\prime}, n_{2}^{\prime}\) and \(l\) : ranks should not increase.

\section*{First draft for \(\bar{A}\)}
- For a two-state \(A\) (more states analogous):
- States: all \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right]\) where accepting states get even rank
- Initial states: all states of the form \(\left[\begin{array}{c}n_{1} \\ \perp\end{array}\right]\)
- Transitions: all \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right] \rightarrow\left[\begin{array}{l}a \\ n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right]\) s.t . ranks don't increase
- The runs of the automaton on a word \(w\) correspond to all the rankings of \(\operatorname{dag}(w)\).
- Observe: \(\bar{A}\) is a NBA even if \(A\) is a DBA, because there are many rankings for the same word.

\section*{Problems to solve}
- How to choose the accepting states?
- They should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Potentially infinitely many states (because rankings can contain arbitrarily large numbers)

\section*{Solving the first problem}
- We use owing states and breakpoints again:
- A breakpoint of a ranking is now a level of the ranking such that no state of the level owes a visit to a node of odd rank.
- We have again: a ranking is odd iff it has infinitely many breakpoints.
- We enrich the state with a set of owing states, and choose the accepting states as those in which the set is empty.

\section*{Owing states}

\(\left[\begin{array}{l}2 \\ \perp\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 2\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}1 \\ \perp\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 0\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 0\end{array}\right] \ldots\)
\(\left\{q_{0}\right\} \quad\left\{q_{1}\right\} \quad \emptyset \quad\left\{q_{1}\right\} \quad \emptyset\)

\section*{Owing states}

\[
\begin{gathered}
{\left[\begin{array}{l}
1 \\
\perp
\end{array}\right] \stackrel{a}{\rightarrow}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
0 \\
0
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \ldots} \\
\left\{q_{1}\right\} \\
\left\{q_{0}\right\}
\end{gathered} \underset{\left\{q_{0}, q_{1}\right\}}{\left\{q_{0}\right\}} .
\]

\section*{Second draft for \(\bar{A}\)}
- For a two-state \(A\) (the case of more states is analogous):
- States: all pairs \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right], 0\) where accepting states get even rank, and \(O\) is set of owing states (of even rank)
- Initial states: all \(\left[\begin{array}{c}n_{1} \\ \perp\end{array}\right],\left\{q_{0}\right\}\) where \(n_{1}\) even if \(q_{0}\) accepting.
- Transitions: all \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right], O \xrightarrow{a}\left[\begin{array}{l}n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right], O^{\prime}\) s.t. ranks don't increase and owing states are correctly updated
- Final states: all states \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right]\), \(\varnothing\)

\section*{Second draft for \(\bar{A}\)}
- The runs of \(\bar{A}\) on a word \(w\) correspond to all the rankings of \(\operatorname{dag}(w)\).
- The accepting runs of \(\bar{A}\) on a word \(w\) correspond to all the odd rankings of \(\operatorname{dag}(w)\).
- Therefore: \(L(\bar{A})=\overline{L(A)}\)

\section*{Solving the second problem}

Proposition: If \(w\) is rejected by \(A\), then \(\operatorname{dag}(w)\) has an odd ranking in which ranks are taken from the range \([0,2 n]\), where \(n\) is the number of states of \(A\). Further, the initial node gets rank \(2 n\).
Proof: We construct such a ranking as follows:
- we proceed in \(n+1\) rounds (from round 0 to round \(n\)), each round with two steps \(k .0\) and \(k .1\) with the exception of round \(n\) which only has \(n .0\)
- each step removes a set of nodes together with all its descendants.
- the nodes removed at step \(i . j\) get rank \(2 i+j\)
- the rank of the initial node is increased to \(2 n\) if necessary (preserves the properties of rankings).

\section*{The steps}
- Step \(i .0\) : remove all nodes having only finitely many successors.
- Step \(i .1\) : remove nodes that are non-accepting and have no accepting descendants
- This immediately guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can only be removed at step \(i .0\)
- It remains to prove: no nodes left after \(n+1\) rounds.

- Step \(i .0\) : remove all nodes having only finitely many successors.
- Step \(i .1\) : remove nodes that are non-accepting and have no accepting descendants
- To prove: no nodes left after n rounds .
- Each level of a dag has a width

- We define the width of a dag as the largest level width that appears infinitely often.
- Each round decreases the width of the dag by at least 1.
- Since the initial width is at most \(n\) after at most \(n\) rounds the width is 0 , and then step \(n .0\) removes all nodes.

\section*{Final \(\bar{A}\)}
- For a two-state \(A\) (the case of more -or fewerstates is analogous):
- States: all pairs \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right], 0\) where \(0 \leq n_{1}, n_{2} \leq 2 n\), \(O\) set of owing states, and accepting states get even rank
- Initial state: \(\left.\begin{array}{c}2 n \\ \perp\end{array}\right],\left\{q_{0}\right\}\)
- Transitions: all \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right], O \xrightarrow[\rightarrow]{a}\left[\begin{array}{l}n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right], O^{\prime}\) s.t. ranks don't
increase and owing states are correctly updated
- Final states: all states \(\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right], \varnothing\)

\section*{An example}
- We construct the complements of
\[
\begin{aligned}
& A_{1}=(\{q\},\{a\}, \delta,\{q\},\{q\}) \text { with } \delta(q, a)=\{q\} \\
& A_{2}=(\{q\},\{a\}, \delta,\{q\}, \varnothing) \text { with } \delta(q, a)=\{q\}
\end{aligned}
\]
- States of \(A_{1}\) :
\[
\langle 0, \varnothing\rangle,\langle 2, \varnothing\rangle,\langle 0,\{q\}\rangle,\langle 2,\{q\}\rangle
\]
- States of \(A_{2}\) :
\[
\langle 0, \varnothing\rangle,\langle 1, \varnothing\rangle,\langle 2, \varnothing\rangle,\langle 0,\{q\}\rangle,\langle 2,\{q\}\rangle
\]
- Initial state of \(A_{1}\) and \(A_{2}:\langle 2,\{q\}\rangle\)

\section*{An example}
- Transitions of \(A_{1}\) :
\[
\langle 2,\{q\}\rangle \xrightarrow{a}\langle 2,\{q\}\rangle,\langle 2,\{q\}\rangle \xrightarrow{a}\langle 0,\{q\}\rangle,\langle 0,\{q\}\rangle \xrightarrow{a}\langle 0,\{q\}\rangle
\]
- Transitions of \(A_{2}\) :
\[
\begin{aligned}
&\langle 2,\{q\}\rangle \xrightarrow{a}\langle 2,\{q\}\rangle,\langle 2,\{q\}\rangle \xrightarrow{a}\langle 1, \varnothing\rangle,\langle 2,\{q\}\rangle \xrightarrow{a}\langle 0,\{q\}\rangle, \\
&\langle 1, \varnothing\rangle \xrightarrow{a}\langle 1, \varnothing\rangle,\langle 1, \varnothing\rangle \xrightarrow{a}\langle 0,\{q\}\rangle, \\
&\langle 0,\{q\}\rangle \xrightarrow{\rightarrow}\langle 0,\{q\}\rangle
\end{aligned}
\]
- Final states of \(A_{1}:\langle 0, \varnothing\rangle,\langle 2, \varnothing\rangle\) (unreachable)
- Final states of \(A_{2}:\langle 0, \varnothing\rangle,\langle 1, \varnothing\rangle,\langle 2, \varnothing\rangle\) (only \(\langle 1, \varnothing\rangle\) is reachable)

CompNBA(A)
Input: NBA \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\)
Output: \(\operatorname{NBA} \bar{A}=\left(\bar{Q}, \Sigma, \bar{\delta}, \bar{q}_{0}, \bar{F}\right)\) with \(L_{\omega}(\bar{A})=\overline{L_{\omega}(A)}\)
\(1 \bar{Q}, \bar{\delta}, \bar{F} \leftarrow \emptyset\)
\(2 \bar{q}_{0} \leftarrow\left[l r_{0},\left\{q_{0}\right\}\right]\)
\(3 \quad W \leftarrow\left\{\left[\operatorname{lr} r_{0},\left\{q_{0}\right\}\right]\right\}\)
4 while \(W \neq \emptyset\) do
5 pick \([l r, P]\) from \(W\); add \([l r, P]\) to \(\bar{Q}\)
\(6 \quad\) if \(P=\emptyset\) then add \([l r, P]\) to \(\bar{F}\)
\(7 \quad\) for all \(a \in \Sigma, l r^{\prime} \in \mathcal{R}\) such that \(l r \stackrel{a}{\mapsto} l r^{\prime}\) do

8
9
10
11
12 return \(\left(\bar{Q}, \Sigma, \bar{\delta}, \bar{q}_{0}, \bar{F}\right)\)
else \(P^{\prime} \leftarrow\left\{q \in Q \mid \operatorname{lr}^{\prime}(q)\right.\) is even \(\}\)
add \(\left([l r, P], a,\left[l r^{\prime}, P^{\prime}\right]\right)\) to \(\bar{\delta}\)
if \(\left[l r^{\prime}, P^{\prime}\right] \notin \bar{Q}\) then add \(\left[l r^{\prime}, P^{\prime}\right]\) to \(W\)
\[
5
\]

\section*{Complexity}
- A state consists of a level of a ranking and a set of owing states.
- A level assigns to each state a number of [\(0,2 n\)] or the symbol \(\perp\).
- So the complement NBA has at most \((2 n+2)^{n} \cdot 2^{n} \in n^{O(n)}=2^{O(n \log n)}\) states.
- Compare with \(2^{n}\) for the NFA case.
- We show that the \(\log n\) factor is unavoidable.

We define a family \(\left\{L_{n}\right\}_{n \geq 1}\) of \(\omega\)-languages s.t.
\(-L_{n}\) is accepted by a NBA with \(n+2\) states.
- Every NBA accepting \(\overline{L_{n}}\) has at least \(n!\in 2^{\ominus(n \log n)}\) states.
- The alphabet of \(L_{n}\) is \(\Sigma_{n}=\{1,2, \ldots, n, \#\}\).
- Assign to a word \(w \in \Sigma_{n}\) a graph \(G(w)\) as follows:
- Vertices: the numbers \(1,2, \ldots, n\).
- Edges: there is an edge \(i \rightarrow j\) iff \(w\) contains infinitely many occurrences of \(i j\).
- Define: \(w \in L_{n}\) iff \(G(w)\) has a cycle.
- \(L_{n}\) is accepted by a NBA with \(n+2\) states.

\section*{Every NBA accepting \(\overline{L_{n}}\) has at least \(n!\in\)} \(2^{\Theta(n \log n)}\) states.
- Let \(\tau\) denote a permutation of \(1,2, \ldots, n\).
- We have:
a) For every \(\tau\), the word \((\tau \#)^{\omega}\) belongs to \(\overline{L_{n}}\) (i.e., its graph contains no cycle).
b) For every two distinct \(\tau_{1}, \tau_{2}\), every word containing inf. many occurrences of \(\tau_{1}\) and inf. many occurrences of \(\tau_{2}\) belongs to \(L_{n}\).

\section*{Every NBA accepting \(\overline{L_{n}}\) has at least \(n!\in\)} \(2^{\Theta(n \log n)}\) states.
- Assume \(A\) recognizes \(\overline{L_{n}}\) and let \(\tau_{1}, \tau_{2}\) distinct. By (a), \(A\) has runs \(\rho_{1}, \rho_{2}\) accepting \(\left(\tau_{1} \#\right)^{\omega}\), \(\left(\tau_{2} \#\right)^{\omega}\). The sets of accepting states visited i.o. by \(\rho_{1}, \rho_{2}\) are disjoint.
- Otherwise we can "interleave" \(\rho_{1}, \rho_{2}\) to yield an acepting run for a word with inf. many occurrences of \(\tau_{1}, \tau_{2}\), contradicting (b).
- So \(A\) has at least one accepting state for each permutation, and so at least \(n\) ! states.```

