Implementing boolean
operations for Blchil automata



Intersection of NBAS

* The algorithm for NFAs does not work ...
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1. Take two copies of the pairing [41, 4,].
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Solution

Apply the same idea as in the conversion NGA—NBA

1.
2.

3.

Take two copies of the pairing [4, 45].

Redirect transitions of the first copy leaving F;to the
second copy.

Redirect transitions of the second copy leaving F,to the
first copy.

Set F to the set F; In the first copy.



IntersNBA(A |, A>)

Input: NBAs Ay = (01, %,01.g01. F1). A2 = (02, X,02, g, F2)
Output: NBA A Ny, Ax = (0. X, 8, gn, F) with L,(A) Ny, A2) = L, (A N Ly,(Aaz)

Q.6,F « 0
go < lgo1.qo2. 1]
W —{ lqo1.q02, 1] |
while W = 0 do
pick [g1, g2, (] from W
add [g1. g2, 1] to O
ifgy € Flandi =1 thenadd [g,,¢2,1] to F’
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for alla € £ do
for all ¢} € 6,1(q1.a),¢5 € 6(g2,a) do
ifi=1and ¢, ¢ F then
add (lg1.g2.1].a.19}.45. 1) to 6
if [¢].q5.1]1 ¢ Q' thenadd [q|.q,.1] to W
ifi =1 and {q) € I then
add ([g1.g2. 1) a.lq,.¢5.2]) to 6
if [¢].45.2] ¢ Q' thenadd [g].q5.2] to W
ifi =2 and ¢, ¢ F> then
add ([g1,492.2],a.[9}. 45, 2]) to &
if [¢}.45.2] ¢ Q' then add [q},¢5.2] to W
ifi =2 and ¢, € F> then
add (Iq1,42.2]. a,1q}. 45, 11) t0
if [¢]. 45,11 ¢ Q' then add [q].q;,1] to W
return (0, X, 6, gy, F)



Special cases/improvements

o If all states of at least one of A, and A, are
accepting, the algorithm for NFAs works.

 Intersection of NBAs A, A,, ..., A,

— Do NOT apply the algorithm for two NBAs (k — 1)
times.

— Proceed instead as in the translation
NGA = NBA: take k copies of [A{, A4,, ..., A}]
(kn, ...n, statesinstead of 2%n, ...n;)



Complement

e Main result proved by Blichi: NBAs are closed
under complement.

« Many later improvements in recent years.

« Construction radically different from the one
for NFAs.



Problems

* The powerset construction does not work.

a

« Exchanging final and non-final states in DBAs
also falils.




Solution

e Extend the idea used to determinize co-Buchi
automata with a new component.

 Recall: a NBA accepts a word w Iff some path of
dag(w) visits final states infinitely often.

 Goal: given NBA A4, construct NBA A such that:

A rejects w
Iff
no path of dag(w) visits accepting states of A I.0.
Iff
some run of A visits accepting states of 4 i.o.
Iff
A accepts w




Running example

da

O==o



Rankings

* Mappings that associate to every node of
dag(w) a rank (a natural number) such that

— ranks never increase along a path, and
— ranks of accepting nodes are even.




Odd rankings

« Aranking is odd If every infinite path of
dag(w) visits nodes of odd rank I.o.
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Prop.: no path of dag(w) visits accepting states of A I.0.
iff
dag(w) has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable
rank.

(<): The stable rank of every path is odd. Since accepting
nodes have even rank, no path visits accepting nodes I.0.
(=). We construct a ranking satisfying the conditions.
Give each accepting node (g, [) rank 2k, where k is the
maximal number of accepting nodes in a path starting at
(q,1).

Give a non-accepting node (g, [) rank 2k + 1, where 2k Is
the maximal even rank among its descendants.



e Goal. A rejects w
Iff
dag(w) has an odd ranking
Iff
some run of A visits accepting states of 4 i.o.
Iff
A accepts w

* |dea: design A so that
— Itsruns on w are the rankings of dag(w), and
— Its acceptings runs on w are the odd rankings of

dag(w).



Representing rankings
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Representing rankings

0

1 1 0 0
0 oot @
a b a b
0 0

RN



Representing rankings
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[
We can determine if [n1 ] - [n,l] may appear in a
n, n;

ranking by just looking at n,,n,,ny,n; and [ : ranks
should not increase.



First draft for A

e For atwo-state A (more states analogous):

n !
— States: all [nﬂ where accepting states get even rank

— Initial states: all states of the form [nﬂ

" n, | a|nj -
— Transitions: all — iy s.t. ranks don’'t increase
n, 2

e The runs of the automaton on a word w correspond
to all the rankings of dag(w).

« Observe: A is a NBA even if A is a DBA, because
there are many rankings for the same word.



Problems to solve

 How to choose the accepting states?

— They should be chosen so that a run is accepted iff
Its corresponding ranking is odd.

o Potentially infinitely many states (because
rankings can contain arbitrarily large numbers)



Solving the first problem

« \We use owing states and breakpoints again:

— A breakpoint of a ranking is now a level of the
ranking such that no state of the level owes a visit
to a node of odd rank.

— We have again: a ranking is odd iff it has infinitely
many breakpoints.

— We enrich the state with a set of owing states, and
choose the accepting states as those in which the
set is empty.



Owing states
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Owing states
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Second draft for A

* For a two-state A (the case of more states Is
analogous):

. m .
— States: all pairs [nﬂ .0 where accepting states get
even rank, and O Is set of owing states (of even rank)

— Initial states: all rﬂ {g,} where n; evenif g,
accepting.

nq

» a |n;
— Transitions: all [ 0 - [ ,1] 0" s.t. ranks don‘t
n, n;

Increase and owing states are correctly updated

. nq
— Final states: all states [nJ N0



Second draft for A

 The runs of A on a word w correspond to all
the rankings of dag (w).

 The accepting runs of 4 on a word w
correspond to all the odd rankings of
dag(w).

e Therefore: L(A) = L(A)



Solving the second problem

Proposition: If w is rejected by A, then dag(w) has an odd
ranking in which ranks are taken from the range [0,2n],
where n is the number of states of A. Further, the initial
node gets rank 2n.

Proof: We construct such a ranking as follows:

e we proceed inn + 1 rounds (from round O to round n), each
round with two steps k. 0 and k. 1 with the exception of round
n which only has n. 0

e each step removes a set of nodes together with all its
descendants.

e thenodesremovedatstepi.; getrank 2i +

e the rank of the initial node is increased to 2n if necessary
(preserves the properties of rankings).



The steps

Step i. O : remove all nodes having only finitely
many successors.

Step i. 1 : remove nodes that are non-accepting
and have no accepting descendants

This Immediately guarantees:
1. Ranks along a path cannot increase.

2. Accepting states get even ranks, because they can
only be removed at step i. O

It remains to prove: no nodes left after n + 1
rounds .



Step i. 0 : remove all nodes having
only finitely many successors.

Step i. 1 : remove nodes that are
non-accepting and have no
accepting descendants



* To prove: no nodes left after n rounds .
e Each level of a dag has a width

* \We define the width of a dag as the largest level
width that appears infinitely often.

e Each round decreases the width of the dag by at
least 1.

e Since the initial width is at most n after at most n

rounds the width is 0, and then step n. O removes all
nodes.




Final A

e For a two-state A (the case of more -or fewer-
states Is analogous):

i n
— States: all pairs | |,0 where 0 < Ny, N, < 2n,
P n,

O set of owing states, and accepting states get even
rank

— Initial state: [2n] {90}

e 1 a [ng
— Transitions: all [n2],0 —>[ ,] 0" s.t. ranks don‘t

Increase and owing states are correctly updated

. nq
— Final states: all states [nJ N0



An example

We construct the complements of
A; = ({q}{a}, 6,{q}.{q}) with 6(q,a) = {q}
Ay = ({g}{a}, 6, {q}, ©) with 6(q,a) ={q}
States of A:
(0,0),(2,0),(0,{q}). (2, {q})

States of A,

(0,0),(1,0),(2,0),(0,{g}). (2,{q})
Initial state of A;and 4,: (2, {q})



An example

* Transitions of A;:

(2.4a1) = 2.{a}) . (2. {q}) = (0. {g}).{0.{q}) > (0, {q})

o Transitions of A,:

2,{ah) > (2.{q}) él<z,{q}>i<1,czgg,<2,{q}>i<o,{q}>,
(1,8) = (1, 0), (1, 8) > (0, {q}),

(0.{q}) — (0,{q})
* Final statesof A,: (0, ®),(2, @) (unreachable)

* Final states of 4,: (0, @), (1,®),(2,®) (only (1, @) is
reachable)




CompNBA(A)
Input: NBA A = (0. %,6,40, F) 3
Output: NBA A = (Q,%,5,G, F) with L,(A) = L,(A)

Q.6,F « 0

go < [lro,{qo}]
W« { [lro,{q0}] }
while W # (0 do
pick [[r, P] from W; add [/r, P] to O
if P = ( then add [/r,P] to F
for all a € =, I € R such that Ir +> I’ do
if P # 0 then P’ < {g € 6(P,a) | Ir'(qg) is even }
else P/ «— {ge Q| Ir(g)iseven )}
10 add ([Ir, P),a,[Ir',P']) to &
if [/, P'] ¢ O then add [/r',P’] to W
12 return (O, X, 0, 4o F)

o0 1 OhoLh B =



Complexity

A state consists of a level of a ranking and a
set of owing states.

* Alevel assigns to each state a number of
[0,2n] or the symbol L.

e So the complement NBA has at most
(2n +2)" . 2" € nom) = 20 logn) gtates,

o Compare with 2™ for the NFA case.
* We show that the log n factor is unavoidable.



We define a family {L.,, },,~; of w-languages s.t.
— L,, I1s accepted by a NBA with n + 2 states.

— Every NBA accepting L,, has at least n! € 20(tlogn)
states.

 The alphabetof L,,isX,, = {12, ..., n, #}.
e Assigntoawordw € X, agraph G(w) as
follows:

— Vertices: the numbers 1,2, ... n.

— Edges: there is an edge i — j iff w contains infinitely
many occurrences of ij.

e Define: w € L, Iff G(w) has a cycle.



e L, Isaccepted by a NBA with n + 2 states.




Every NBA accepting L,, has at least n! €
20(nlogn) states.

e Let 7 denote a permutationof 1,2, ..., n.

* \We have:
a) For every 7, the word (7 #)“ belongsto L,,
(1.e., Its graph contains no cycle).

b) For every two distinct 7, 7,, every word
containing Inf. many occurrences of 7; and
Inf. many occurrences of 7, belongsto L.



Every NBA accepting L,, has at least n! €
20(nlogn) states.

 Assume A recognizes L,, and let 7, 7, distinct.
By (a), A has runs p,, p, accepting (7, #)<,
(7, #)®. The sets of accepting states visited
1.0. by p,, p, are disjoint.

— Otherwise we can interleave*p,, p, to yield an
acepting run for a word with inf. many occurrences
of t,, 7, , contradicting (b).
e S0 A has at least one accepting state for each
permutation, and so at least n! states.



