Implementing boolean
operations for Blchil automata

Intersection of NBAS

* The algorithm for NFAs does not work ...

Solution

Apply the same idea as in the conversion NGA—NBA
1. Take two copies of the pairing [41, 4,].

Solution

Apply the same idea as in the conversion NGA—NBA
1. Take two copies of the pairing [41, 4,].

2. Redirect transitions of the first copy leaving F; to the
second copy.

Solution

Apply the same idea as in the conversion NGA—NBA
1. Take two copies of the pairing [41, 4,].

2. Redirect transitions of the first copy leaving F; to the
second copy.

3. Redirect transitions of the second copy leaving F,to the
first copy.

Solution

Apply the same idea as in the conversion NGA—NBA

1.
2.

3.

Take two copies of the pairing [4, 45].

Redirect transitions of the first copy leaving F;to the
second copy.

Redirect transitions of the second copy leaving F,to the
first copy.

Set F to the set F; In the first copy.

IntersNBA(A |, A>)

Input: NBAs Ay = (01, %,01.g01. F1). A2 = (02, X,02, g, F2)
Output: NBA A Ny, Ax = (0. X, 8, gn, F) with L,(A) Ny, A2) = L, (A N Ly,(Aaz)

Q.6,F « 0
go < lgo1.qo2. 1]
W —{ lqo1.q02, 1] |
while W = 0 do
pick [g1, g2, (] from W
add [g1. g2, 1] to O
ifgy € Flandi =1 thenadd [g,,¢2,1] to F’

20

21

Fa)

22

for alla € £ do
for all ¢} € 6,1(q1.a),¢5 € 6(g2,a) do
ifi=1and ¢, ¢ F then
add (lg1.g2.1].a.19}.45. 1) to 6
if [¢].q5.1]1 ¢ Q' thenadd [q|.q,.1] to W
ifi =1 and {q) € I then
add ([g1.g2. 1) a.lq,.¢5.2]) to 6
if [¢].45.2] ¢ Q' thenadd [g].q5.2] to W
ifi =2 and ¢, ¢ F> then
add ([g1,492.2],a.[9}. 45, 2]) to &
if [¢}.45.2] ¢ Q' then add [q},¢5.2] to W
ifi =2 and ¢, € F> then
add (Iq1,42.2]. a,1q}. 45, 11) t0
if [¢]. 45,11 ¢ Q' then add [q].q;,1] to W
return (0, X, 6, gy, F)

Special cases/improvements

o If all states of at least one of A, and A, are
accepting, the algorithm for NFAs works.

 Intersection of NBAs A, A,, ..., A,

— Do NOT apply the algorithm for two NBAs (k — 1)
times.

— Proceed instead as in the translation
NGA = NBA: take k copies of [A{, A4,, ..., A}]
(kn, ...n, statesinstead of 2%n, ...n;)

Complement

e Main result proved by Blichi: NBAs are closed
under complement.

« Many later improvements in recent years.

« Construction radically different from the one
for NFAs.

Problems

* The powerset construction does not work.

a

« Exchanging final and non-final states in DBAs
also falils.

Solution

e Extend the idea used to determinize co-Buchi
automata with a new component.

 Recall: a NBA accepts a word w Iff some path of
dag(w) visits final states infinitely often.

 Goal: given NBA A4, construct NBA A such that:

A rejects w
Iff
no path of dag(w) visits accepting states of A I.0.
Iff
some run of A visits accepting states of 4 i.o.
Iff
A accepts w

Running example

da

O==o

Rankings

* Mappings that associate to every node of
dag(w) a rank (a natural number) such that

— ranks never increase along a path, and
— ranks of accepting nodes are even.

Odd rankings

« Aranking is odd If every infinite path of
dag(w) visits nodes of odd rank I.o.

2 1

Ca0.0 - *+Cao. 1)
¥

1 1 0] 0]
Gl oD Cand)" @
a b a b
0 0

Prop.: no path of dag(w) visits accepting states of A I.0.
iff
dag(w) has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable
rank.

(<): The stable rank of every path is odd. Since accepting
nodes have even rank, no path visits accepting nodes I.0.
(=). We construct a ranking satisfying the conditions.
Give each accepting node (g, [) rank 2k, where k is the
maximal number of accepting nodes in a path starting at
(q,1).

Give a non-accepting node (g, [) rank 2k + 1, where 2k Is
the maximal even rank among its descendants.

e Goal. A rejects w
Iff
dag(w) has an odd ranking
Iff
some run of A visits accepting states of 4 i.o.
Iff
A accepts w

* |dea: design A so that
— Itsruns on w are the rankings of dag(w), and
— Its acceptings runs on w are the odd rankings of

dag(w).

Representing rankings

1 1

2 1 1
(ol @
a b a a
2 0 0"’

1= B> 105 ol o] -

Representing rankings

0

1 1 0 0
0 oot @
a b a b
0 0

RN

Representing rankings

0 0

AL
L= Gl= 2= Tol= 111

[
We can determine if [n1] - [n,l] may appear in a
n, n;

ranking by just looking at n,,n,,ny,n; and [: ranks
should not increase.

First draft for A

e For atwo-state A (more states analogous):

n !
— States: all [nﬂ where accepting states get even rank

— Initial states: all states of the form [nﬂ

" n, | a|nj -
— Transitions: all — iy s.t. ranks don’'t increase
n, 2

e The runs of the automaton on a word w correspond
to all the rankings of dag(w).

« Observe: A is a NBA even if A is a DBA, because
there are many rankings for the same word.

Problems to solve

 How to choose the accepting states?

— They should be chosen so that a run is accepted iff
Its corresponding ranking is odd.

o Potentially infinitely many states (because
rankings can contain arbitrarily large numbers)

Solving the first problem

« \We use owing states and breakpoints again:

— A breakpoint of a ranking is now a level of the
ranking such that no state of the level owes a visit
to a node of odd rank.

— We have again: a ranking is odd iff it has infinitely
many breakpoints.

— We enrich the state with a set of owing states, and
choose the accepting states as those in which the
set is empty.

Owing states

1 1

g
RRERANA R

{q0} {q.} 0) {q.} @

Owing states

0

a L@f@

b] [o] ~[1]= [o] - [}

{q.} {90} {9091} {40}

Second draft for A

* For a two-state A (the case of more states Is
analogous):

. m .
— States: all pairs [nﬂ .0 where accepting states get
even rank, and O Is set of owing states (of even rank)

— Initial states: all rﬂ {g,} where n; evenif g,
accepting.

nq

» a |n;
— Transitions: all [0 - [,1] 0" s.t. ranks don‘t
n, n;

Increase and owing states are correctly updated

. nq
— Final states: all states [nJ N0

Second draft for A

 The runs of A on a word w correspond to all
the rankings of dag (w).

 The accepting runs of 4 on a word w
correspond to all the odd rankings of
dag(w).

e Therefore: L(A) = L(A)

Solving the second problem

Proposition: If w is rejected by A, then dag(w) has an odd
ranking in which ranks are taken from the range [0,2n],
where n is the number of states of A. Further, the initial
node gets rank 2n.

Proof: We construct such a ranking as follows:

e we proceed inn + 1 rounds (from round O to round n), each
round with two steps k. 0 and k. 1 with the exception of round
n which only has n. 0

e each step removes a set of nodes together with all its
descendants.

e thenodesremovedatstepi.; getrank 2i +

e the rank of the initial node is increased to 2n if necessary
(preserves the properties of rankings).

The steps

Step i. O : remove all nodes having only finitely
many successors.

Step i. 1 : remove nodes that are non-accepting
and have no accepting descendants

This Immediately guarantees:
1. Ranks along a path cannot increase.

2. Accepting states get even ranks, because they can
only be removed at step i. O

It remains to prove: no nodes left after n + 1
rounds .

Step i. 0 : remove all nodes having
only finitely many successors.

Step i. 1 : remove nodes that are
non-accepting and have no
accepting descendants

* To prove: no nodes left after n rounds .
e Each level of a dag has a width

* \We define the width of a dag as the largest level
width that appears infinitely often.

e Each round decreases the width of the dag by at
least 1.

e Since the initial width is at most n after at most n

rounds the width is 0, and then step n. O removes all
nodes.

Final A

e For a two-state A (the case of more -or fewer-
states Is analogous):

i n
— States: all pairs | |,0 where 0 < Ny, N, < 2n,
P n,

O set of owing states, and accepting states get even
rank

— Initial state: [2n] {90}

e 1 a [ng
— Transitions: all [n2],0 —>[,] 0" s.t. ranks don‘t

Increase and owing states are correctly updated

. nq
— Final states: all states [nJ N0

An example

We construct the complements of
A; = ({q}{a}, 6,{q}.{q}) with 6(q,a) = {q}
Ay = ({g}{a}, 6, {q}, ©) with 6(q,a) ={q}
States of A:
(0,0),(2,0),(0,{q}). (2, {q})

States of A,

(0,0),(1,0),(2,0),(0,{g}). (2,{q})
Initial state of A;and 4,: (2, {q})

An example

* Transitions of A;:

(2.4a1) = 2.{a}) . (2. {q}) = (0. {g}).{0.{q}) > (0, {q})

o Transitions of A,:

2,{ah) > (2.{q}) él<z,{q}>i<1,czgg,<2,{q}>i<o,{q}>,
(1,8) = (1, 0), (1, 8) > (0, {q}),

(0.{q}) — (0,{q})
* Final statesof A,: (0, ®),(2, @) (unreachable)

* Final states of 4,: (0, @), (1,®),(2,®) (only (1, @) is
reachable)

CompNBA(A)
Input: NBA A = (0. %,6,40, F) 3
Output: NBA A = (Q,%,5,G, F) with L,(A) = L,(A)

Q.6,F « 0

go < [lro,{qo}]
W« { [lro,{q0}] }
while W # (0 do
pick [[r, P] from W; add [/r, P] to O
if P = (then add [/r,P] to F
for all a € =, I € R such that Ir +> I’ do
if P # 0 then P’ < {g € 6(P,a) | Ir'(qg) is even }
else P/ «— {ge Q| Ir(g)iseven)}
10 add ([Ir, P),a,[Ir',P']) to &
if [/, P'] ¢ O then add [/r',P’] to W
12 return (O, X, 0, 4o F)

o0 1 OhoLh B =

Complexity

A state consists of a level of a ranking and a
set of owing states.

* Alevel assigns to each state a number of
[0,2n] or the symbol L.

e So the complement NBA has at most
(2n +2)" . 2" € nom) = 20 logn) gtates,

o Compare with 2™ for the NFA case.
* We show that the log n factor is unavoidable.

We define a family {L.,, },,~; of w-languages s.t.
— L,, I1s accepted by a NBA with n + 2 states.

— Every NBA accepting L,, has at least n! € 20(tlogn)
states.

 The alphabetof L,,isX,, = {12, ..., n, #}.
e Assigntoawordw € X, agraph G(w) as
follows:

— Vertices: the numbers 1,2, ... n.

— Edges: there is an edge i — j iff w contains infinitely
many occurrences of ij.

e Define: w € L, Iff G(w) has a cycle.

e L, Isaccepted by a NBA with n + 2 states.

Every NBA accepting L,, has at least n! €
20(nlogn) states.

e Let 7 denote a permutationof 1,2, ..., n.

* \We have:
a) For every 7, the word (7 #)“ belongsto L,,
(1.e., Its graph contains no cycle).

b) For every two distinct 7, 7,, every word
containing Inf. many occurrences of 7; and
Inf. many occurrences of 7, belongsto L.

Every NBA accepting L,, has at least n! €
20(nlogn) states.

 Assume A recognizes L,, and let 7, 7, distinct.
By (a), A has runs p,, p, accepting (7, #)<,
(7, #)®. The sets of accepting states visited
1.0. by p,, p, are disjoint.

— Otherwise we can interleave*p,, p, to yield an
acepting run for a word with inf. many occurrences
of t,, 7, , contradicting (b).
e S0 A has at least one accepting state for each
permutation, and so at least n! states.

