
Implementing boolean 
operations for Büchi automata 



Intersection of NBAs

• The algorithm for NFAs does not work ...



Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [퐴 ,퐴 ].
2. Redirect transitions of the first copy leaving 퐹 to the 

second copy.
3. Redirect transitions of the second copy leaving 퐹 to the 

second copy.
4. Set 퐹 to the set 퐹 in the first copy.



Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [퐴 ,퐴 ].
2. Redirect transitions of the first copy leaving 퐹 to the 

second copy.
3. Redirect transitions of the second copy leaving 퐹 to the 

second copy.
4. Set 퐹 to the set 퐹 in the first copy.



Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [퐴 ,퐴 ].
2. Redirect transitions of the first copy leaving 퐹 to the 

second copy.
3. Redirect transitions of the second copy leaving 퐹 to the

first copy.
4. Set 퐹 to the set 퐹 in the first copy.



Solution

Apply the same idea as in the conversion NGA→NBA
1. Take two copies of the pairing [퐴 ,퐴 ].
2. Redirect transitions of the first copy leaving 퐹 to the 

second copy.
3. Redirect transitions of the second copy leaving 퐹 to the

first copy.
4. Set 퐹 to the set 퐹 in the first copy.





Special cases/improvements

• If all states of at least one of 퐴 and 퐴 are 
accepting, the algorithm for NFAs works.

• Intersection of NBAs 퐴 ,퐴 , … ,퐴
– Do NOT apply the algorithm for two NBAs (푘 − 1)

times. 
– Proceed instead as in the translation 

NGA ⇒ NBA: take 푘 copies of [퐴 ,퐴 , … ,퐴 ]
(푘푛  …푛 states instead of 2 푛  …푛 )



Complement

• Main result proved by Büchi:  NBAs are closed 
under complement.

• Many later improvements in recent years.
• Construction radically different from the one 

for NFAs.



Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs 
also fails.



Solution

• Extend the idea used to determinize co-Büchi 
automata with a new component.

• Recall: a NBA accepts a word 푤 iff some path of 
푑푎푔 푤 visits final states infinitely often.

• Goal: given NBA 퐴, construct NBA 퐴̅ such that:

퐴 rejects 푤
iff

no path of 푑푎푔 푤 visits accepting states of 퐴 i.o.
iff

some run of 퐴̅ visits accepting states of 퐴̅ i.o.
iff

퐴̅ accepts 푤



Running example



Rankings
• Mappings that associate to every node of 
푑푎푔(푤) a rank (a natural number) such that
– ranks never increase along a path, and
– ranks of accepting nodes are even. 



Odd rankings

• A ranking is odd if every infinite path of 
푑푎푔 푤 visits nodes of odd rank i.o. 



Prop.: no path of 푑푎푔 푤 visits accepting states of 퐴 i.o.
iff 

푑푎푔 푤 has an odd ranking

Proof:  Ranks along infinite paths eventually reach a stable 
rank.
(⇐): The stable rank of every path is odd. Since accepting 
nodes have even rank, no path visits accepting nodes i.o.
(⇒): We construct a ranking satisfying the conditions.
Give each accepting node 푞, 푙  rank 2푘, where 푘 is the 
maximal number of accepting nodes in a path starting at 
푞, 푙 .

Give a non-accepting node 푞, 푙 rank 2푘 + 1, where 2k is 
the maximal even rank among its descendants.



• Goal: 퐴 rejects 푤
iff

푑푎푔 푤 has an odd ranking
iff

some run of 퐴̅ visits accepting states of 퐴̅ i.o.
iff

퐴̅ accepts 푤

• Idea: design 퐴̅ so that
 its runs on 푤 are the rankings of 푑푎푔(푤), and
 its acceptings runs on 푤 are the odd rankings of 

푑푎푔 푤 .



Representing rankings

2
⊥ → 1

2 → 1
⊥ → 1

0 → 1
0  … 



1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ … 

Representing rankings



1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ … 

We can determine if
푛
푛

→ 푛
푛 may appear in a 

ranking by just looking at 푛 ,푛 ,푛 ,푛 and 푙 : ranks 
should not increase.

Representing rankings



• For a two-state 퐴 (more states analogous): 

– States: all 
푛
푛 where accepting states get even rank

– Initial states: all states of the form  
푛
⊥

– Transitions: all 
푛
푛

→ 푛
푛 s.t . ranks don´t increase

• The runs of the automaton on a word 푤 correspond 
to all the rankings of 푑푎푔 푤 .

• Observe: 퐴̅ is a NBA even if 퐴 is a DBA, because 
there are many rankings for the same word.

First draft for 퐴̅



Problems to solve

• How to choose the accepting states?
– They should be chosen so that a run is accepted iff 

its corresponding  ranking is odd.

• Potentially infinitely many states (because 
rankings can contain arbitrarily large numbers)



Solving the first problem

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the 

ranking such that no state of the level owes a visit 
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely 
many breakpoints.

– We enrich the state with a set of owing states, and 
choose the accepting states as those in which the 
set is empty. 



Owing states

2
⊥ → 1

2 → 1
⊥ → 1

0 → 1
0  … 

{푞 } {푞 } ∅ {푞 } ∅



Owing states

1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ … 

∅ {푞 } {푞 } {푞 , 푞 } {푞 }



• For a two-state 퐴 (the case of more states is 
analogous): 

– States: all pairs  
푛
푛 ,푂 where accepting states get 

even rank, and  푂 is set of owing states (of even rank)

– Initial states: all  
푛
⊥ , {푞 } where 푛 even if 푞

accepting.

– Transitions: all 
푛
푛

,푂 → 푛
푛 ,푂′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
푛
푛 ,∅

Second draft for 퐴̅



• The runs of 퐴̅ on a word 푤 correspond to all 
the rankings of 푑푎푔 푤 .

• The accepting runs of 퐴̅ on a word 푤
correspond to all the odd rankings of 
푑푎푔 푤 .

• Therefore:  퐿 퐴̅ = 퐿(퐴)  

Second draft for 퐴̅



Solving the second problem

Proposition: If 푤 is rejected by 퐴, then 푑푎푔(푤) has an odd 
ranking in which ranks are taken from the range 0,2푛 , 
where 푛 is the number of states of 퐴.  Further, the initial 
node gets rank 2푛.
Proof: We construct such a ranking as follows:

• we proceed in 푛 + 1 rounds (from round 0 to round 푛), each 
round with two steps 푘. 0 and 푘. 1 with the exception of round 
푛 which only has 푛. 0

• each step removes a set of nodes together with all its  
descendants. 

• the nodes removed at step 푖. 푗 get rank 2푖 + 푗
• the rank of the initial node is increased to 2푛 if necessary 

(preserves the properties of rankings).



The steps

• Step 푖. 0 : remove all nodes having only finitely 
many successors.

• Step 푖. 1 : remove nodes that are non-accepting 
and have no accepting descendants 

• This immediately guarantees : 
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can 

only be removed at step 푖. 0
• It remains to prove: no nodes left after 푛 + 1

rounds .



• Step 푖. 0 : remove all nodes having 
only finitely many successors.

• Step 푖. 1 : remove nodes that are 
non-accepting and have no 
accepting descendants



• To prove: no nodes left after n rounds .
• Each level of a dag has a width

• We define the width of a dag as the largest level 
width that appears infinitely often.

• Each round decreases the width of the dag by at 
least 1.

• Since the initial width is at most 푛 after at most 푛
rounds the width is 0, and then step 푛. 0 removes all 
nodes.



• For a two-state 퐴 (the case of more -or fewer-
states is analogous): 

– States: all pairs  
푛
푛 ,푂 where 0 ≤ 푛 , 푛 ≤ 2푛, 

푂 set of owing states, and accepting states get even 
rank

– Initial state: 2푛
⊥ , {푞 }

– Transitions: all  
푛
푛 ,푂 → 푛

푛 ,푂′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
푛
푛 ,∅

Final 퐴̅



An example

• We construct the complements of 
퐴 = ( 푞 , 푎 , 훿, 푞 , 푞 ) with 훿 푞,푎 = {푞}
퐴 = ( 푞 , 푎 , 훿, 푞 ,∅) with 훿 푞,푎 = {푞}

• States of 퐴 :
0,∅ , 2,∅ , 0, {푞} , 2, {푞}

• States of 퐴 :
0,∅ , 1,∅ , 2,∅ , 0, {푞} , 2, {푞}

• Initial state of 퐴 and 퐴 : 2, {푞}



An example

• Transitions of 퐴 :
2, {푞} → 2, {푞}  , 2, {푞} → 0, {푞} , 0, {푞} → 0, {푞}

• Transitions of 퐴 :
2, {푞} → 2, {푞}  , 2, {푞} → 1,∅ , 2, {푞} → 0, {푞} , 

1,∅ → 1,∅ , 1,∅ → 0, {푞} ,
0, {푞} → 0, {푞}

• Final states of 퐴 : 0,∅ , 2,∅ (unreachable)
• Final states of 퐴 : 0,∅ , 1,∅ , 2,∅ (only 1,∅ is 

reachable)





Complexity

• A state consists of a level of a ranking and a 
set of owing states.

• A level assigns to each state a number of
[0,2푛] or the symbol ⊥.

• So the complement NBA has at most 
2푛 + 2 2 ∈ 푛 = 2 states. 

• Compare with 2 for the NFA case.
• We show that the log 푛 factor is unavoidable.



We define a family 퐿 of 휔-languages s.t.
– 퐿 is accepted by a NBA with 푛 + 2 states.
– Every NBA accepting 퐿 has at least 푛! ∈ 2

states.

• The alphabet of 퐿 is Σ = {1,2, … ,푛, #}.
• Assign to a word 푤 ∈ Σ a graph 퐺(푤) as 

follows:
– Vertices: the numbers 1,2, … ,푛 .
– Edges: there is an edge 푖 → 푗 iff 푤 contains infinitely 

many occurrences of  푖푗.
• Define: 푤 ∈ 퐿 iff 퐺(푤) has a cycle.



• 퐿 is accepted by a NBA with 푛 + 2 states.



Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Let 휏 denote a permutation of 1,2, … ,푛 . 
• We have:

a) For every 휏, the word 휏 # belongs to 퐿
(i.e., its graph contains no cycle).

b) For every two distinct  휏 , 휏 , every word 
containing  inf. many occurrences of 휏 and
inf. many occurrences of 휏 belongs to 퐿 .



Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Assume 퐴 recognizes 퐿 and let 휏 , 휏 distinct. 

By (a), 퐴 has runs 휌 , 휌  accepting 휏  # , 
휏  # .  The sets of accepting states visited 

i.o. by 휌 , 휌 are disjoint.
– Otherwise we can ``interleave‘‘휌 ,휌 to yield an 

acepting run for a word with inf. many occurrences 
of 휏 , 휏 , contradicting (b).

• So 퐴 has at least one accepting state for each 
permutation, and so at least 푛! states.


