Pattern Matching

Pattern Matching

- Given
 - -a word w (the text) of length n, and
 - a regular expression p (the pattern) of length m
 - determine
 - the smallest number k' such that some [k, k']-factor of w belongs to L(p).

NFA-based solution

PatternMatchingNFA(*t*, *p*) **Input:** text $t = a_1 \dots a_n \in \Sigma^+$, pattern $p \in \Sigma^*$ **Output:** the first occurrence of *p* in *t*, or \perp if no such occurrence exists.

- 1 $A \leftarrow RegtoNFA(\Sigma^* p)$
- 2 $S \leftarrow Q_0$
- 3 **for all** k = 0 to n 1 **do**
- 4 **if** $S \cap F \neq \emptyset$ then return k
- 5 $S \leftarrow \delta(S, a_{k+1})$
- 6 return \perp
- Line 1 takes O(m³) time (O(m²) for fixed alphabet), output has O(m) states
- Loop is executed at most *n* times
- One iteration takes $O(s^2)$ time, where s is the number of states of A
- Since s = O(m), the total runtime is $O(m^3 + nm^2)$, and $O(nm^2)$ for $m \le n$.

DFA-based solution

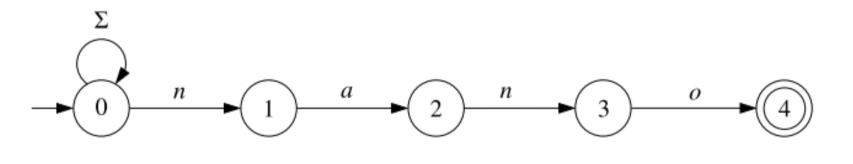
PatternMatchingDFA(*t*, *p*) **Input:** text $t = a_1 \dots a_n \in \Sigma^+$, pattern *p* **Output:** the first occurrence of *p* in *t*, or \perp if no such occurrence exists.

- 1 $A \leftarrow NFAtoDFA(RegtoNFA(\Sigma^* p))$
- $2 \quad q \leftarrow q_0$
- 3 **for all** k = 0 to n 1 **do**
- 4 **if** $q \in F$ then return k
- 5 $q \leftarrow \delta(q, a_{k+1})$
- 6 return \perp
- Line 1 takes $2^{O(m)}$ time
- Loop is executed at most *n* times
- One iteration takes constant time
- Total runtime is $O(n) + 2^{O(m)}$

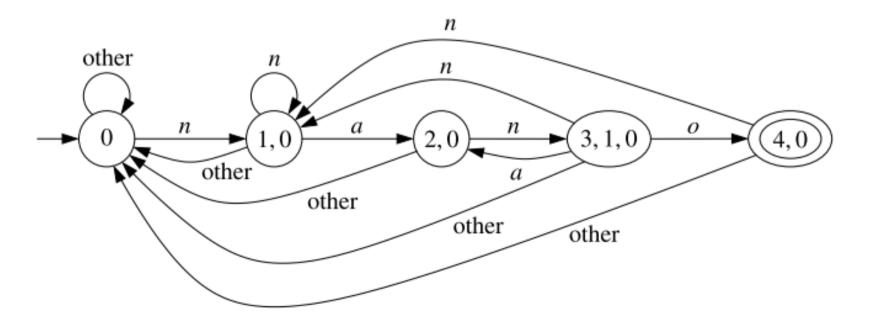
The word case

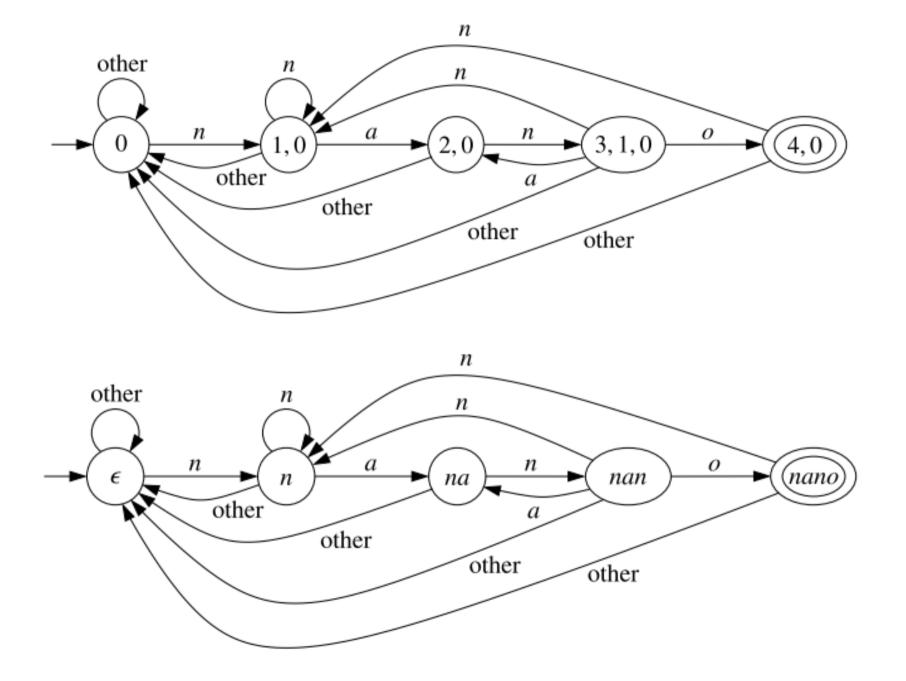
- The pattern $p = b_1 b_2 \dots b_m$ is a word of length m
- Naive algorithm: move a window of size m along the word one letter at a time, and compare with p after each step. Runtime: *O*(*nm*)
- We give an algorithm with O(n + m) runtime for any alphabet of size $0 \le |\Sigma| \le n$.
- First we explore in detail the shape of the DFA for $\Sigma^* p$.

Obvious NFA for $\Sigma^* p$ and p = nano

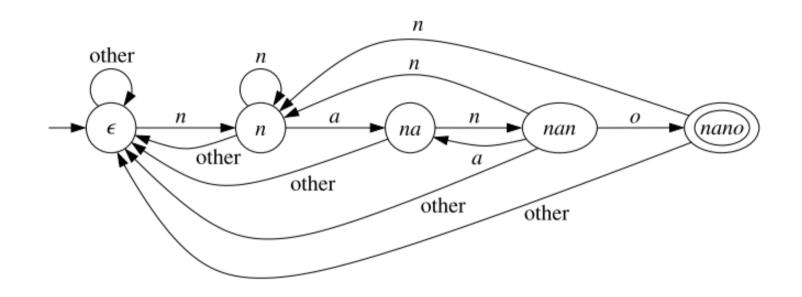


Result of applying NFAtoDFA:



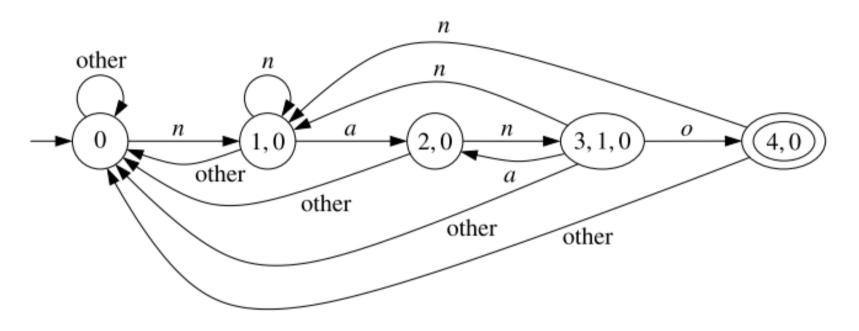


Intuition



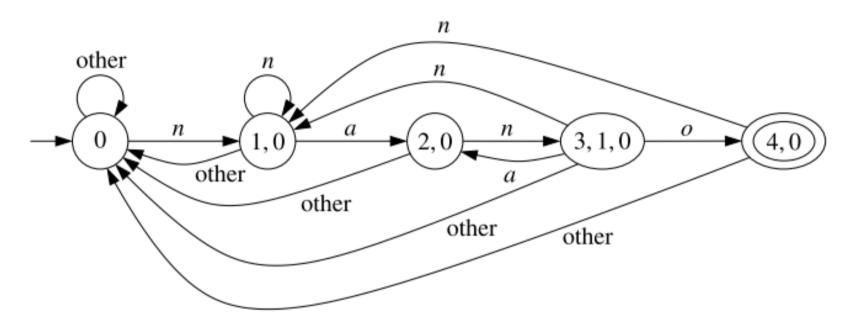
- Transitions of the "spine" correspond to hits: the next letter is the one that "makes progress" towards nano
- Other transitions correspond to misses, i.e., "wrong letters" and "throw the automaton back"

Observations



- For every state *i* = 0,1,..., 4 of the NFA there is exactly one state *S* of the DFA such that *i* is the largest state of *S*.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.

Observations



- For every state *i* = 0,1,..., 4 of the NFA there is exactly one state *S* of the DFA such that *i* is the largest state of *S*.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.
- Do these properties hold for every pattern p?

Heads and tails, hits and misses

- Head of S, denoted h(S) : largest state of S
- Tail of S, denoted t(S) : rest of the state
- Example: $h(\{3,1,0\}) = 3, t(\{3,1,0\}) = \{1,0\}$
- Given a state *S*, the letter leading to the next state in the "spine" is the (unique) hit letter for *S*
- All other letters are miss letters for *S*
- Example: hit for {3,1,0} is o, whereas n or a are misses

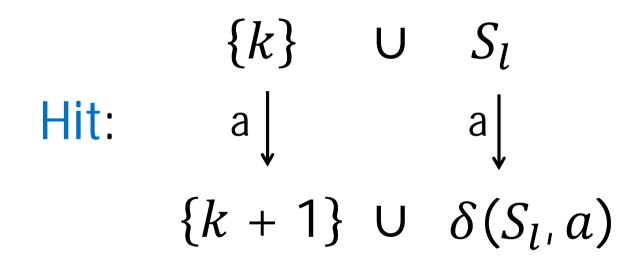
Fundamental property of the DFA

- Proposition: Let S_k be the k-th state picked from the workset during the execution of NFAtoDFA(A_p).
 - (1) $h(S_k) = k_k$
 - (2) If k > 0, then $t(S_k) = S_l$ for some l < k

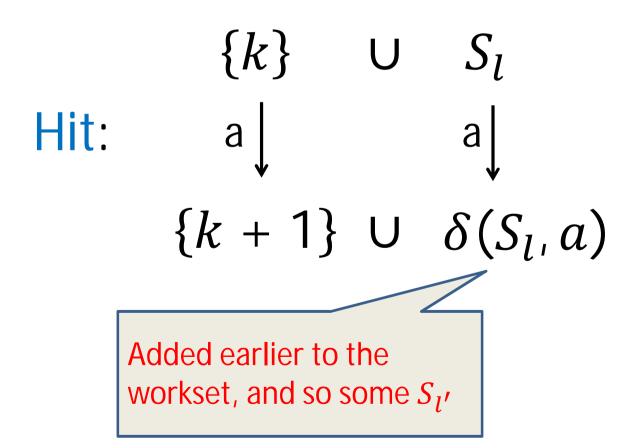
Proof Idea:

- (1) and (2) hold for $S_0 = \{0\}$.
- For the step $k \to k + 1$ we look at $\delta(S_k, a)$ for each a, where δ transition relation of A_p .
- By i.h. we have $S_k = \{k\} \cup S_l$ for some l < k
- We distinguish two cases: a is a hit for S_k (that is, $a = b_{k+1}$), and a is a miss for S_k .

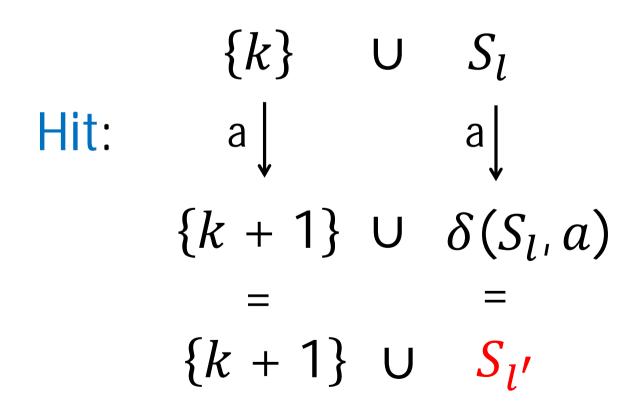
- $S_k = \{k\} \cup S_l$ for some l < k
- $\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$



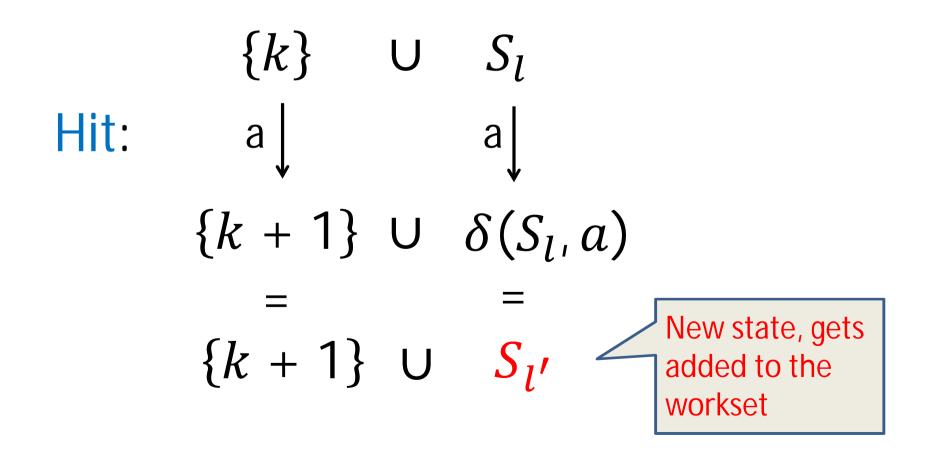
•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$



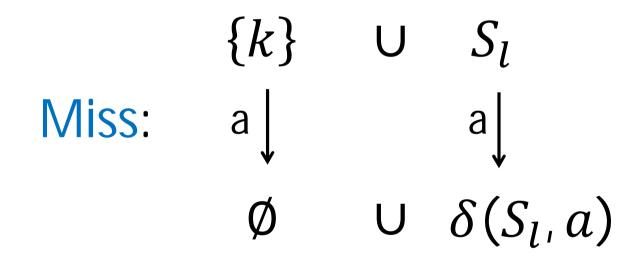
- $S_k = \{k\} \cup S_l$ for some l < k
- $\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$



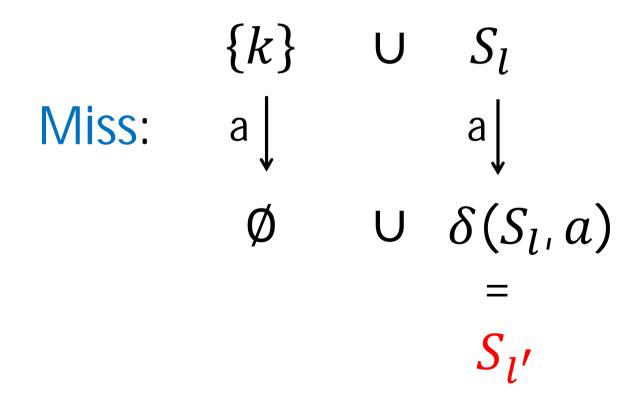
•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$



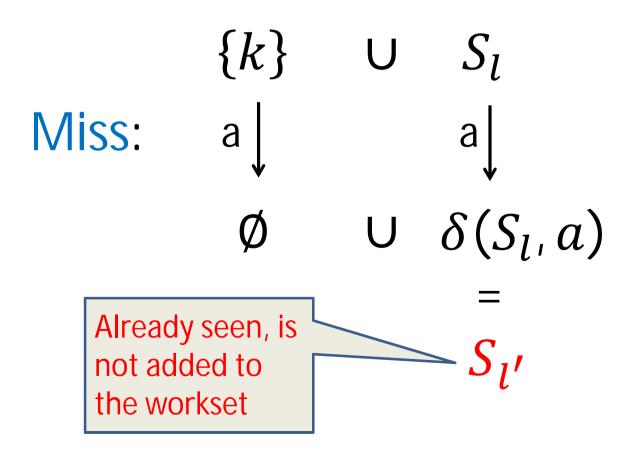
•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$



•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$



•
$$\delta(S_{k}, a) = \delta(k, a) \cup \delta(S_{l}, a)$$



Consequences

Prop: The result of applying NFAtoDFA(A_p), where A_p is the obvious NFA for $\Sigma^* p$, yields a minimal DFA with m + 1 states and $|\Sigma|(m + 1)$ transitions.

Proof: All states of the DFA accept different languages.

So: concatenating NFAtoDFA and PatternMatchingDFA yields a $O(n + |\Sigma|m)$ algorithm.

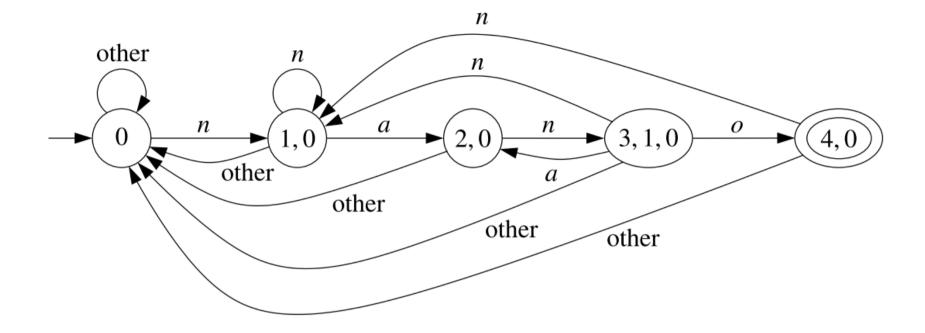
- Good enough for constant alphabet
- Not good enough for $|\Sigma| = \Omega(n)$

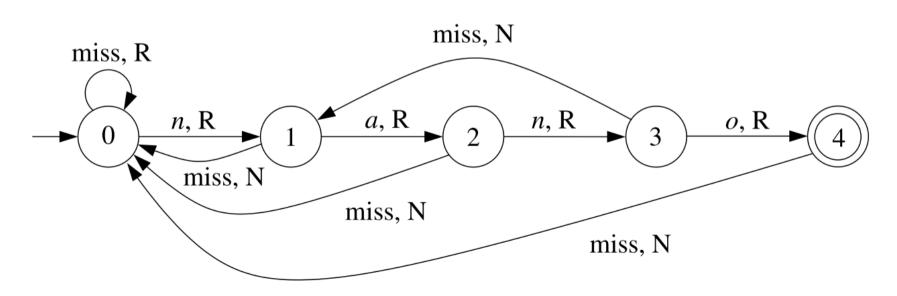
Lazy DFAs

- We introduce a new data structure: lazy DFAs. We construct a lazy DFA for $\Sigma^* p$ with m + 1states and 2m + 2 transitions.
- Lazy DFAs: automata that read the input from a tape by means of a reading head that can move one cell to the right or stay put
- DFA=Lazy DFA whose head never stays put

Lazy DFA for $\Sigma^* p$

- By the fundamental property, the DFA B_p for $\Sigma^* p$ behaves from state S_k as follows:
 - If a is a hit, then $\delta_B(S_k, a) = S_{k+1}$, i.e., the DFA moves to the next state in the spine.
 - If a is a miss, then $\delta_B(S_k, a) = \delta_B(t(S_k), a)$, i.e., the DFA moves to the same state it would move to if it were in state $t(S_k)$.
- When a is a miss for S_k, the lazy automaton moves to state t(S_k) without advancing the head. In other words, it "delegates" doing the move to t(S_k)
- So the lazyDFA behaves the same for all misses.





• Formally, for the lazy DFA C:

 $-\delta_C(S_{k}, a) = (S_{k+1}, R)$ if a is a hit

 $-\delta_C(S_k, a) = (t(S_k), N)$ if a is a miss

- So the lazy DFA has m + 1 states and 2m transitions.
- It can be constructed in O(m) space:
 - For each $0 \le k \le n$, compute and store S_k with
 - $S_0 \coloneqq \{0\}$, and
 - $S_{k+1} \coloneqq \delta_A(S_k, b_{k+1})$,
 - Compute the transitions as at the top of the slide.

- Running the lazy DFA on the text takes O(n) time:
 - For every text letter the lazy DFA performs a sequence of "stay put" steps followed by a "right" step. Call this sequence a macrostep.
 - Let S_{j_i} be the state after the *i*-th macrostep. The number of steps of the *i*-th macrostep is at most $j_{i-1} j_i + 2$.

So the total number of steps is at most $\sum_{i=1}^{n} (j_{i-1} - j_i + 2) = j_0 - j_n + 2n \le 2n$

Computing the lazy DFA in O(m) time

- For the O(m + n) bound it remains to show that the lazy DFA can be constructed in O(m) time.
- Let *Miss(k)* be the head of the state reached from *S_k* by a miss.
- It is easy to compute each of Miss(0), ..., Miss(m) in O(m) time, leading to a O(n + m²) time algorithm.
 (Compute the S_k and use Miss(k) = h(t(S_k)).)
- Already good enough for almost all purposes. But, can we compute all of *Miss*(0), ..., *Miss*(m) together in time O(m)? Looks impossible!
- It isn't though ...

For i > 1 we have:

$$t(S_i) = t(\delta_B(S_{i-1}, b_i))$$

= $t(\delta_A(\{i-1\}, b_i) \cup \delta_A(t(S_{i-1}), b_i))$
= $t(\{i\} \cup \delta_A(t(S_{i-1}), b_i))$
= $\delta_B(t(S_{i-1}), b_i)$

For i > 1 we have:

$$t(S_{i}) = t(\delta_{B}(S_{i-1}, b_{i}))$$

= $t(\delta_{A}(\{i-1\}, b_{i}) \cup \delta_{A}(t(S_{i-1}), b_{i}))$
= $t(\{i\} \cup \delta_{A}(t(S_{i-1}), b_{i}))$
= $\delta_{B}(t(S_{i-1}), b_{i})$

Define $miss(S_i)$: = $t(S_i)$ (that is, $Miss(k) = h(miss(S_i))$). We get:

$$miss(S_i) = \begin{cases} S_0 & \text{if } i = 0 \text{ or } i = 1\\ \delta_B(miss(S_{i-1}), b_i) & \text{if } i > 1 \end{cases}$$
$$\delta_B(S_j, b) = \begin{cases} S_{j+1} & \text{if } b = b_{j+1} \text{ (hit)}\\ S_0 & \text{if } b \neq b_{j+1} \text{ (miss) and } j = 0\\ \delta_B(miss(S_j), b) & \text{if } b \neq b_{j+1} \text{ (miss) and } j \neq 0 \end{cases}$$

$$miss(S_i) = \begin{cases} S_0 & \text{if } i = 0 \text{ or } i = 1\\ \delta_B(miss(S_{i-1}), b_i) & \text{if } i > 1 \end{cases}$$
$$\delta_B(S_j, b) = \begin{cases} S_{j+1} & \text{if } b = b_{j+1} \text{ (hit)}\\ S_0 & \text{if } b \neq b_{j+1} \text{ (miss) and } j = 0\\ \delta_B(miss(S_j), b) & \text{if } b \neq b_{j+1} \text{ (miss) and } j \neq 0 \end{cases}$$

• With $Miss(i) \coloneqq h(miss(S_i))$ we get the following algorithm:

CompMiss(p)		DeltaB(j,b)	
Input: pattern $p = b_1 \cdots b_m$.		Input: head $j \in \{0, \ldots, m\}$, letter b.	
Output: heads of targets of miss transitions.		Output: head of the state $\delta_B(S_j, b)$.	
1	$Miss(0) \leftarrow 0; Miss(1) \leftarrow 0$	1	while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow Miss(j)$
2	for $i \leftarrow 2, \ldots, m$ do	2	if $b = b_{j+1}$ then return $j + 1$
3	$Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$	3	else return 0

• Observe: the values *Miss(j)* required by each call of *DeltaB* have already been computed when they are needed.

CompMiss(p) **Input:** pattern $p = b_1 \cdots b_m$. **Output:** heads of targets of miss transitions.

- 1 $Miss(0) \leftarrow 0; Miss(1) \leftarrow 0$
- 2 for $i \leftarrow 2, \ldots, m$ do
- 3 $Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$

DeltaB(j, b)

Input: head $j \in \{0, ..., m\}$, letter *b*. **Output:** head of the state $\delta_B(S_j, b)$.

- 1 while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow Miss(j)$
- 2 **if** $b = b_{j+1}$ **then return** j + 1
- 3 else return 0

All calls to *DeltaB* lead together to O(m) iterations of the while loop. The call *DeltaB*(*Miss*(*i* - 1), *b_i*) executes at most

Miss(i-1) - (Miss(i) - 1)iterations, because:

- initially j is assigned Miss(i 1) (line 3 of CompMiss)
- each iteration decreases j by at least 1 (line 1 of *DeltaB*, *Miss*(j) < j)
- the return value assigned to *Miss(i)* is at most the final value of *j* plus 1. (line 2 of *DeltaB*)

• Total number of iterations:

$$\sum_{i=2}^{m} (Miss(i-1) - Miss(i) + 1)$$

$$\leq Miss(1) - Miss(m) + m - 1$$

$$\leq m$$