
Pattern Matching



Pattern Matching

• Given
 a word 푤 (the text) of length 푛, and
 a regular expression p (the pattern) of length 푚

determine
 the smallest number 푘′ such that some 

푘,푘 -factor of 푤 belongs to 퐿(푝).



• Line 1 takes  푂(푚 ) time (푂 푚 for fixed alphabet) , output has 푂(푚)
states 

• Loop is executed  at most  푛 times
• One iteration takes  푂(푠 ) time , where 푠 is the number of states of 퐴
• Since 푠 = 푂(푚), the total runtime is 푂 푚 + 푛푚 , and 푂(푛푚 ) for
푚 ≤ 푛 .

NFA-based solution



• Line 1 takes  2 ( ) time
• Loop is executed  at most  푛 times
• One iteration takes constant time
• Total runtime is  푂 푛 + 2 ( )

DFA-based solution



The word case

• The pattern 푝 = 푏 푏 … 푏 is a word of length 푚
• Naive algorithm: move a window of size m along 

the word one letter at a time, and compare with 
p after each step. Runtime: 푂(푛푚) 

• We give an algorithm with 푂(푛 + 푚) runtime for 
any alphabet of size 0 ≤ Σ ≤ 푛 .

• First we explore in detail the shape of the DFA for 
Σ∗푝 .



Obvious NFA for Σ∗푝 and 푝 = 푛푎푛표

Result of applying NFAtoDFA:





• Transitions of the „spine“ correspond to hits: the next letter 
is the one  that „makes progress“ towards nano

• Other transitions correspond to misses, i.e., „wrong letters“ 
and „throw the automaton back“

Intuition



• For every state  푖 =  0,1, … , 4 of the NFA  there is exactly one 
state 푆 of the DFA such that 푖 is the largest state of 푆.

• For every state 푆 of the DFA, with the exception of 푆 = {0}, the 
result of removing the largest state is again a state of the DFA.

Observations



• For every state  푖 =  0,1, … , 4 of the NFA  there is exactly one 
state 푆 of the DFA such that 푖 is the largest state of 푆.

• For every state 푆 of the DFA, with the exception of 푆 = {0}, the 
result of removing the largest state is again a state of the DFA.

• Do these properties hold for every pattern  푝?

Observations



• Head of 푆, denoted ℎ(푆) : largest state of 푆
• Tail of 푆, denoted  푡 푆 : rest of the state
• Example: ℎ({3,1,0}) =  3, 푡({3,1,0}) =  {1,0}

• Given a state 푆, the letter leading to the next state in 
the „spine“  is the (unique) hit letter for 푆

• All other letters are miss letters for 푆
• Example: hit for {3,1,0} is 표, whereas 푛 or 푎 are 

misses

Heads and tails, hits and misses



• Proposition: Let 푆 be the 푘-th state picked from the workset
during the execution of NFAtoDFA(퐴 ).

(1) ℎ 푆 = 푘,
(2) If 푘 > 0, then 푡 푆 = 푆 for some 푙 < 푘

Proof Idea: 

• (1) and (2) hold for 푆 = {0}.
• For the step 푘 → 푘 + 1 we look at 훿 푆 ,푎 for each 푎, where 

훿 transition relation of 퐴 .

• By i.h. we have  푆 = 푘 ∪  푆 for some  푙 < 푘
• We distinguish two cases: 푎 is a hit for 푆 (that is, 푎 = 푏 ), 

and 푎 is a miss for 푆 .

Fundamental property of the DFA



• δ 푆 ,푎 = 훿 푘, 푎  ∪  훿(푆 , 푎)

• 푆 = 푘 ∪ 푆 for some  푙 < 푘

Hit:
푘  ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a



• δ 푆 ,푎 = 훿 푘, 푎  ∪  훿(푆 , 푎)

Hit:
푘  ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a

Added earlier to the
workset, and so some 푆

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎  ∪  훿(푆 , 푎)

Hit:
푘  ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a

푘 + 1 ∪ 푆
= =

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎  ∪  훿(푆 , 푎)

Hit:
푘  ∪ 푆

푘 + 1 ∪ 훿(푆 ,푎)

a a

푘 + 1 ∪ 푆
= =

• 푆 = 푘 ∪ 푆 for some  푙 < 푘

New state, gets
added to the
workset



• δ 푆 ,푎 = 훿 푘, 푎  ∪  훿(푆 , 푎)

Miss:
푘  ∪ 푆

∅ ∪ 훿(푆 ,푎)

a a

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎  ∪  훿(푆 , 푎)

Miss:
푘  ∪ 푆

∅ ∪ 훿(푆 ,푎)

a a

푆
=

• 푆 = 푘 ∪ 푆 for some  푙 < 푘



• δ 푆 ,푎 = 훿 푘, 푎  ∪  훿(푆 , 푎)

Miss:
푘  ∪ 푆

∅ ∪ 훿(푆 ,푎)

a a

푆
=

• 푆 = 푘 ∪ 푆 for some  푙 < 푘

Already seen, is
not added to
the workset



Prop: The result of applying NFAtoDFA(퐴 ), where 퐴
is the obvious NFA for Σ∗푝 , yields a minimal DFA with 
푚 + 1 states and Σ (푚 + 1) transitions.
Proof: All states of the DFA accept different languages.

So: concatenating NFAtoDFA and PatternMatchingDFA
yields a 푂(푛 + Σ 푚) algorithm. 

 Good enough for constant alphabet 
 Not good enough for Σ = Ω(푛)

Consequences



Lazy DFAs

• We introduce a new data structure: lazy DFAs. 
We construct a lazy DFA for Σ∗푝 with 푚 + 1
states and 2푚 + 2 transitions. 

• Lazy DFAs: automata that read the input from 
a tape by means of a reading head that can 
move one cell to the right or stay put 

• DFA=Lazy DFA whose head never stays put



Lazy DFA for Σ∗푝

• By the fundamental property, the DFA 퐵 for 훴∗푝
behaves from state 푆 as follows:
– If 푎 is a hit, then 훿 푆 , 푎 = 푆 , i.e., the DFA 

moves to the next state in the spine.
– If 푎 is a miss, then 훿 푆 , 푎 = 훿 푡(푆 ),푎 , i.e., the 

DFA moves to the same state it would move to if it 
were in state 푡(푆 ).

• When 푎 is a miss for 푆 , the lazy automaton moves to 
state 푡 푆 without advancing the head. In other words, 
it „delegates“ doing the move to 푡 푆

• So the lazyDFA behaves the same for all misses.





• Formally, for the lazy DFA 퐶:
– 훿 푆 , 푎 = (푆 ,푅) if 푎 is a hit
– 훿 푆 , 푎 = 푡(푆 ),푁 if 푎 is a miss

• So the lazy DFA has 푚 + 1 states and 2푚
transitions.

• It can be constructed in 푂(푚) space: 
– For each 0 ≤ 푘 ≤ 푛, compute and store 푆 with

• 푆 ≔ 0 , and
• 푆 ≔ 훿 푆 , 푏 , 

– Compute the transitions as at the top of the slide. 



• Running the lazy DFA on the text takes 푂 푛
time:
– For every text letter the lazy DFA performs a 

sequence of „stay put“ steps followed by a „right“ 
step. Call this sequence a macrostep.

– Let  푆 be the state after the 푖-th macrostep. The 
number of steps of the 푖-th macrostep is at most 
푗 − 푗 + 2 . 

So the total number of steps is at most 

푗 − 푗 + 2 = 푗 − 푗 + 2푛 ≤ 2푛  



Computing the lazy DFA in 푂(푚) time

• For the 푂(푚 + 푛) bound it remains to show that the lazy DFA 
can be constructed in 푂(푚) time.

• Let M푖푠푠(푘) be the head of the state reached from 푆 by a 
miss.

• It is easy to compute each of  푀푖푠푠 0 , … ,푀푖푠푠 푚 in 푂(푚)
time, leading to a 푂(푛 + 푚 ) time algorithm.
(Compute the 푆 and use 푀푖푠푠 푘 = ℎ(푡 푆 ).)

• Already good enough for almost all purposes. But, can we 
compute all of 푀푖푠푠 0 , … ,푀푖푠푠 푚 together in time 
푂 푚 ? Looks impossible!

• It isn‘t  though ...



For 푖 > 1 we have: 

푡(푆 ) = 푡  훿 푆 , 푏  
= 푡 훿 푖 − 1 , 푏 ∪ 훿 (푡 푆 ,푏 )
= 푡  푖 ∪ 훿 푡 푆 , 푏
= 훿 푡 푆 , 푏

Define  푚푖푠푠 푆 : = 푡(푆 ) (that is, 푀푖푠푠 푘 = ℎ(푚푖푠푠 푆 ). 
We get:



For 푖 > 1 we have: 

푡(푆 ) = 푡  훿 푆 , 푏  
= 푡 훿 푖 − 1 , 푏 ∪ 훿 (푡 푆 ,푏 )
= 푡  푖 ∪ 훿 푡 푆 , 푏
= 훿 푡 푆 , 푏

Define 푚푖푠푠 푆 : = 푡(푆 ) (that is, 푀푖푠푠 푘 = ℎ(푚푖푠푠 푆 ). 
We get:



• With 푀푖푠푠 푖 ≔ ℎ(푚푖푠푠 푆 ) we get the following algorithm: 

• Observe: the values Miss(j) required by each call of DeltaB have 
already been computed when they are needed.



All calls to DeltaB lead  together
to 푂(푚) iterations of the while loop.
The call  퐷푒푙푡푎퐵(푀푖푠푠(푖 − 1), 푏 )
executes at most 

푀푖푠푠(푖 − 1) − (푀푖푠푠(푖) − 1) 
iterations, because:
• initially 푗 is assigned 푀푖푠푠 푖 − 1

(line 3 of CompMiss)
• each iteration decreases 푗 by at 

least 1
(line 1 of 퐷푒푙푡푎퐵, 푀푖푠푠 푗 < 푗)

• the return value assigned to
푀푖푠푠 푖 is at most the final value
of 푗 plus 1.
(line 2 of 퐷푒푙푡푎퐵)



• Total number of iterations:

푀푖푠푠 푖 − 1 −푀푖푠푠 푖 + 1  

≤  푀푖푠푠 1 −푀푖푠푠 푚 + 푚 − 1
≤ 푚


