Automata and Formal Languages - Exercise Sheet 5

Exercise 5.1

Let $L_{1}=\{b a a, a a a, b a b\}$ and $L_{2}=\{b a a, a a b\}$.
(a) Give an algorithm for the following operation:

Input: A fixed-length language $L \subseteq \Sigma^{k}$ described explicitly as a set of words.
Output: State q of the master automaton over Σ such that $L(q)=L$.
(b) Use the previous algorithm to build the states of the master automaton for L_{1} and L_{2}.
(c) Compute the state of the master automaton representing $L_{1} \cup L_{2}$.
(d) Identify the kernels $\left\langle L_{1}\right\rangle,\left\langle L_{2}\right\rangle$, and $\left\langle L_{1} \cup L_{2}\right\rangle$.

Exercise 5.2

(a) Give an recursive algorithm for the following operation:

Input: \quad States p and q of the master automaton.
Output: State r of the master automaton such that $L(r)=L(p) \cdot L(q)$.
Observe that the languages $L(p)$ and $L(q)$ can have different lengths. Try to reduce the problem for p, q to the problem for p^{a}, q.
(b) Give an recursive algorithm for the following operation:

Input: A state q of the master automaton.
Output: \quad State r of the master automaton such that $L(r)=L(q)^{R}$
where R is the reverse operator.
(c) A coding over an alphabet Σ is a function $h: \Sigma \mapsto \Sigma$. A coding h can naturally be extended to a morphism over words, i.e. $h(\varepsilon)=\varepsilon$ and $h(w)=h\left(w_{1}\right) h\left(w_{2}\right) \cdots h\left(w_{n}\right)$ for every $w \in \Sigma^{n}$. Give an algorithm for the following operation:

Input: A state q of the master automaton and a coding h.
Output: State r of the master automaton such that $L(r)=\{h(w): w \in L(q)\}$.
Can you make your algorithm more efficient when h is a permutation?

Exercise 5.3

Let $k \in \mathbb{N}_{>0}$. Let flip : $\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ be the function that inverts the bits of its input, e.g. flip $(010)=101$. Let val : $\{0,1\}^{k} \rightarrow \mathbb{N}$ be such that $\operatorname{val}(w)$ is the number represented by w in the least significant bit first encoding.
(a) Describe the minimal transducer that accepts

$$
L_{k}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{k} \mid \operatorname{val}(y)=\operatorname{val}(\operatorname{flip}(x))+1 \bmod 2^{k}\right\}
$$

(b) Build the state r of the master transducer for L_{3}, and the state q of the master automaton for $\{010,110\}$.
(c) Adapt the algorithm pre seen in class to compute post and compute using this algorithm post (r, q).

