
Technische Universität München Winter term 2020/21
I7
Prof. J. Esparza / M. Lazić / C. Weil-Kennedy

Automata and Formal Languages — Exercise Sheet 3

Exercise 3.1

Consider the following DFAs A, B and C:

p0 p1

b
a a

b

q0 q1
b

a b

r0 r1

a
b

a

Use pairings to decide algorithmically whether L(A) ∩ L(B) ⊆ L(C).

Exercise 3.2

Consider the following NFAs A and B:

p0

p1

q0

q1 q2

q3

a

b a

a

b
b

b

a

a

a, b

a

b

(a) Use algorithm UnivNFA to determine whether L(B) = {a, b}∗.

(b) Use algorithm InclNFA to determine whether L(A) ⊆ L(B).

Exercise 3.3

(a) We have seen that testing whether two NFAs accept the same language can be done by using algorithm
InclNFA twice. Give an alternative algorithm, based on pairings, for testing equality.

(b) Give two NFAs A and B for which exploring only the minimal states of [NFAtoDFA(A),NFAtoDFA(B)]
is not sufficient to determine whether L(A) = L(B).

(c) Show that the problem of determining whether an NFA and a DFA accept the same language is PSPACE-
hard.



Exercise 3.4

The perfect shuffle of two languages L,L′ ⊆ Σ∗ is defined as:

L �̃ L′ = {w ∈ Σ∗ : ∃a1, . . . , an, b1, . . . , bn ∈ Σ s.t. a1 · · · an ∈ L and
b1 · · · bn ∈ L′ and
w = a1b1 · · · anbn and n ≥ 0} .

Give an algorithm that takes two DFAs A and B in input, and that returns a DFA accepting L(A) �̃ L(B).

Exercise 3.5

Let L ⊆ Σ∗ be a language accepted by an NFA A. For every u, v ∈ Σ∗, we say that u � v if and only if u can
be obtained by deleting zero, one or multiple letters of v. For example, abc � abca, abc � acbac, abc � abc,
ε � abc and aab 6� acbac. Consider the following NFA A. Give an NFA-ε for each of the following languages
and then generalize your approach to any NFA:

q p

a
b

a, b

(a) ↓L = {w ∈ Σ∗ | w � w′ for some w′ ∈ L},

(b) ↑L = {w ∈ Σ∗ | w′ � w for some w′ ∈ L},

(c)
√
L = {w ∈ Σ∗ | ww ∈ L},



Solution 3.1

We first build the pairing accepting L(A) ∩ L(B). Note that it is not necessary to explore the implicit trap
states of A and B as they cannot lead to final states in the pairing. We obtain:

p0, q0 p1, q1 p0, q1
b

a

b

b

Now, we build the pairing accepting (L(A) ∩ L(B)) \ L(C) from the above automaton and C. Note that we
must explore the implicit trap state of C as it may be part of final states in the pairing. We obtain:

p0, q0, r0 p1, q1, r1 p0, q1,⊥ p1, q1,⊥

a

b b

b

b

Since the above automaton contains final states, its language is non empty and hence L(A) ∩ L(B) 6⊆ L(C).
Note that we can reach this conclusion as soon as we construct state (p1, q1, r1). For example, the word ab
belongs to L(a) and L(b), but not to L(c).

Solution 3.2

(a) The trace of the execution is as follows:

Iter. Q W

0 ∅ {{q0}}

1 {{q0}} {{q1, q2}}

2 {{q0}, {q1, q2}} {{q2, q3}}

3 {{q0}, {q1, q2}, {q2, q3}} {q3}

At the fourth iteration, the algorithm tests state {q3} which is minimal and non final, and hence it returns
false. Therefore, L(B) 6= {a, b}∗.

(b) The trace of the algorithm is as follows:

Iter. Q W

0 ∅ {[p0, {q0}]}

1 {[p0, {q0}]} {[p1, {q1, q2}]}

2 {[p0, {q0}], [p1, {q1, q2}]} {[p1, {q0, q2, q3}]}

3 {[p0, {q0}], [p1, {q1, q2}], [p1, {q0, q2, q3}]} ∅

At the third iteration, W becomes empty and hence the algorithm returns true. Therefore L(A) ⊆ L(B).



Input: NFAs A = (Q,Σ, δ, Q0, F ) and A′ = (Q′,Σ, δ′, Q′0, F
′).

Output: L(A) = L(A′)?
1 Q← ∅
2 W ← {[Q0, Q

′
0]}

3 while W 6= ∅ do
4 pick [P, P ′] from W
5 if (P ∩ F = ∅) 6= (P ′ ∩ F ′ = ∅) then
6 return false
7 for a ∈ Σ do
8 q ← [δ(P, a), δ′(P ′, a)]
9 if q 6∈ Q ∧ q 6∈W then

10 add q to W

11 return true

Solution 3.3

(a) We construct the pairing [NFAtoDFA(A),NFAtoDFA(B)] on the fly. The algorithm returns false if it
encounters a state [P, P ′] such that only one of P and P ′ contains a final state. If no such state is
encountered, the algorithm returns true.

(b) Let A and B be the following NFAs:

p q r

a, b a, b

a

a, b

The pairing of A and B is as follows:

{p}, {q} {p}, {q, r}

b

a

a, b

State [{p}, {q}] does not allow us to conclude anything since both p and q are non final. However, state
[{p}, {q, r}], which is not minimal, allows us to conclude that L(A) 6= L(B) since r is final.

(c) To show PSPACE-hardness, it suffices to give a reduction from NFA universality. Let A be an NFA. Let
B the one state DFA that accepts Σ∗. The following holds:

L(A) = Σ∗ ⇐⇒ L(A) = L(B).

Therefore, 〈A〉 7→ 〈A,B〉 is a reduction from NFA universality to NFA/DFA equality.

Solution 3.4

Let A = (Q,Σ, δ, q0, F ) and B = (Q′,Σ, δ′, q′0, F
′). Intuitively, we build a DFA C that alternates between

reading a letter in A and reading a letter in B. To do so, we build two copies of the product of A and B.
Reading a letter a in the first copy simulates reading a in A and then goes to the bottom copy, and vice versa.
A word is accepted if it ends up in a state (p, q) of the top copy such that p ∈ F and q ∈ F ′.

Formally, C = (Q′′,Σ, δ′′, q′′0 , F
′′) where



• Q′′ = Q×Q′ × {>,⊥},

• q′′0 = (q0, q
′
0,>),

• δ(p, a) =

{
(δ(q, a), q′,⊥) if p = (q, q′, r) and r = >,
(q, δ′(q′, a),>) if p = (q, q′, r) and r = ⊥,

• F ′′ = {(q, q′,>) : q ∈ F and q′ ∈ F ′}.

As for most constructions, some states of C may be non reachable from the initial state. We give an algorithm
that avoids this:

Input: DFAs A = (Q,Σ, δ, q0, F ) and B = (Q′,Σ, δ′, q′0, F
′).

Output: A DFA C = (Q′′,Σ, δ′′, q′′0 , F
′′) such that L(C) = L(A) �̃ L(B).

1 Q′′ ← ∅
2 δ′′ ← ∅
3 F ′′ ← ∅
4 W ← {(q0, q′0,>)}
5 while W 6= ∅ do
6 pick p = (q, q′, r) from W
7 add p to Q′′

8 if q ∈ F , q′ ∈ F ′ and r = > then
9 add p to F ′′

10 for a ∈ Σ do
11 if r = > then
12 p′ ← (δ(q, a), q′,⊥)
13 else if r = ⊥ then
14 p′ ← (q, δ(q′, a),>)
15 add (p, a, p′) to δ′′

16 if p′ 6∈ Q′′ then add p′ to W

17 return (Q′′,Σ, δ′′, (q0, q
′
0,>), F ′′)

Solution 3.5

Let A = (Q,Σ, δ, Q0, F ) be an NFA that accepts L.

(a) We add a ε-transition “parallel” to every transition of A. This simulates the deletion of letters from words
of L. More formally, let B = (Q,Σ, δ′, Q0, F ) be such that, for every q ∈ Q and a ∈ Σ ∪ {ε},

δ′(q, a) =

{
δ(q, a) if a ∈ Σ,

{q ∈ Q : q ∈ δ(q, b) for some b ∈ Σ} if a = ε.

(b) For every state of Q, we add self-loops for each letter of Σ. This corresponds to the insertion of letters in
words of L. More formally, let B = (Q,Σ, δ′, Q0, F ) be such that δ′(q, a) = δ(q, a) ∪ {q} for every q ∈ Q
and a ∈ Σ.

(c) Intuitively, we construct an automaton B that guesses an intermediate state p and then reads w simul-
taneously from an initial state q0 and from p. The automaton accepts if it simultaneously reaches p and
and an accepting state qF . More formally, let B = (Q′,Σ, δ′, Q′0, F

′) be such that

Q′ = Q×Q×Q,
Q′0 = {(p, q, p) : p ∈ Q, q ∈ Q0},
F ′ = {(p, p, q) : p ∈ Q, q ∈ F},

and, for every p, q, r ∈ Q and a ∈ Σ,

δ′((p, q, r), a) = {(p, q′, r′) : q′ ∈ δ(q, a), r′ ∈ δ(r, a)}.


