Finite Universes

Finite Universes

When the universe is finite (e.g., the interval
[0,23%2 — 1]), all objects can be encoded by words of
the same length.

A language L has lengthn > O if
— L=0,o0r
— every word of L has length n.

L is a fixed-length language if it has length n for some
n=0.
Observe:

— Fixed-length languages contain finitely many words.

— @ and {<} are the only two languages of length 0.

— @ i1s a language of any length!

The master automaton

@ba, baa, bab, bba, bbb} w
a b a b

@@@

a a, b a,b
b
b
a
@ a,b I

a, b

b

The master automaton

The master automaton over X is the tuple M = (Qy, Z, 8u, Fy),
where

— Qu 1s the set of all fixed-length languages;
— Oy QX X > Qpisgivenby 8y (L, a) = L%,
— Fyistheset {{e} }.

Prop: The language recognized from state L of the master
automaton is L.

Proof: By induction on the length n of L.

n = 0. Then either L = @ or L = {&}, and result follows by inspection.

n > 0. Then 6y, (L,a) = L® forevery a € X, and L?* has smaller length than
L. By induction hypothesis the state L% recognizes the language L?,
and so the state L recognizes the language L.

The master automaton

* We denote the ,fragment” of the master automaton

reachable from state L by A;

e [nitial stateis L.
e States and transitions are those reachable from L.

e Prop: A; Is the minimal DFA recognizing L.
Proof: By definition, all states of A; are reachable

from its initial state.
Since every state of the master automaton recognizes

Its ,,own" language, distinct states of A; recognize
distinct languages.

Data structure for fixed-length languages

e The structure representing the set of languages

L={Lq,...,Ly,}Isthe fragment of the master automaton
containing states L4, ..., L,,, and their descendants.

e Itisamulti-DFA, i.e., a DFA with multiple initial states.

L L, Lj
a,b 4 a,b
a b

Data structure for fixed-length languages

* We represent multi-DFAs as tables of nodes.
 Anodeisapair{q,s)where

— g Is a state identifier, and

— s =1(qq,...,q.;) ISasuccessor tuple.

 The table for a multi-DFA contains a node for each state but the
states for @ and e.

Ident. | a-succ b-succ
2 1 0

N N D0 B W
S oo O -
S 'S T ND I

Data structure for fixed-length languages

e The procedure make[T](s)

— returns the state identifier of the node of table T having s
as successor tuple, if such a node exists;

— otherwise it adds a new node {(q,s) to T, where g is a
fresh identifier, and returns gq.

 make|[T](s) assumes that T contains a node for every
identifier in s.

Implementing union and intersection

* We give a recursive algorithm inter|[T|(q4,q5):
— Input: state identifiers g4, g, from table T of the same length.

— Output: identifier of the state recognizing L(g,) N L(g,) In
the multi-DFA for T.

— Side-effect: if the identifier is not in T, then the algorithm
adds new nodes to T, I.e., after termination the table T may
have been extended.

e The algorithm follows immediately from the following properties
(DIfL;=0orL,=0thenL;NL, =0Q;
(2) ifL; ={e}=L,thenL; N L, = {e};
B) IfLy #@and L, # @, then (L N L,)* = LT n LY for every
aeE .

Implementing union and intersection

inter(qi,q»)
Input: states g, ¢» recognizing languages of the same length
Output: state recognizing L(g) N L(g»)

]
2
3
4
5
6
7

if G(q1,q>) 1s not empty then return G(q1, g2)

if g1 = q¢ or g» = g¢ then return g

else if g = g, and ¢g» = g, then return ¢,

else /* q1,92 € {q0,q:} */
foralli=1,...,mdor; « inter(qy,q5)
G(q1,q2) <« make(ry,..., y)
return G(q, g2)

Implementing union and intersection

Implementing union and intersection

12,13 = 15

DN

9,10 — 14

AN

0,70 S e 7,6 = 6

v

,L1-1{[0,1=0{|0,1=0| L1~ 1 L1->1(|LL0-O0||L,1-1|(1,1-1

Implementing fixed-length complement

e Ifaset X € U isencoded by a language L of length n, then the set
U \ X is encoded by the fixed-length complement =™ \ L,
denoted by L™. Thisis different from L!

* Since the empty language has all lengths, we have @™ = 2™ for
every n > 0, in particular ° = 2° = {¢},

e The algorithm follows immediately from the following properties
(1) If L has length 0 and L = @ then L° = {e}.
(2) If L has length 0 and L = {e} then L° = @.

(3) If L has length n > 1, then (L") = I@" .

Implementing fixed-length complement

comp(n, q)
Input: length n, state g of length n

Output: state recognizing L(q)
I if G(n, g) 1s not empty then return G(n, q)
2 ifn=0and g = gy then return ¢,
3 elseif n =0 and g = g, then return ¢
4 else /« n>1 %/
5 foralli=1,...,mdor; «— comp(n—1,qg")
6 G(n,q) < make(ry,...,ry)
7 return G(n, g)

Implementing fixed-length complement

Implementing complement

3: 9 16

-

4: 12 17

A

2:5

I:0—4

N

1:0—~ 4

2:5- 14

8

0;0—~ 1| [0;0 1

4

1:2+ 3

A\

0:1-0][|0;0-1

Implementing fixed-length universality

» Alanguage L of length n is fixed-length universal if L = Z".

e The algorithm for universality follows immediately from the
following properties

(1) If L = @ then L is not universal.
(2) If L ={€e} then L is universal.

(3) If @ = L # e then L is universal iff L* is universal for every
ae€ .

Implementing fixed-length universality

univ(q)
Input: state ¢

Output: true if L(g) is fixed-length universal,
false otherwise

if G(g) 1s not empty then return G(g)

if g = g¢ then return false

else if g = g, then return true

else /xqg # qgpand g # g¢ * /
G(qg) < and(univ(g®),...,univ(g“))
return G(g)

N D BN -

Implementing fixed-length equality

* If two languages L4, L, of the same length are represented by
nodes g4, g, of the same table thenwe have L, =L, iffqg, = q,,
and so equality can be checked in constant time.

« If the languages are represented by nodes from different tables,
then equality amounts to isomorphism of the DFAs rooted at the
nodes.

eq2(q1, q2)
Input: states g, ¢> of different tables
Output: true if L(g;) = L(g»), false otherwise
if G(q1, g2) 1s not empty then return G(q,, g2)
if g1 = g¢1 and ¢» = g¢> then G(q;,g2) « true
else if ¢; = g¢; and g2 # gg> then G(q,, g») < false
else if q1 # qo1 and q2 = qo2 then G((]l,qg) «— false
else /xq) # go1 and g2 # qp2 * /

G(q1,q2) < and(ea(q}', q5'), . .., ea(q|", 45"))
return G(q, q2)

~N O B W -

NFAs as starting point

 Given: Acyclic NFA A accepting a fixed-length language.
Goal: Simultaneously determinize and minimize A

« Each state of A accepts a fixed-length language.
* \We give an algorithm state(S):

— Input: a subset S of states of A accepting languages of the
same length.

— QOutput: the state of the master automaton accepting
UqES L(Q)-

« Goalis achieved by calling state({g,})

NFAs as starting point

* The algorithm follows from the following observations:

1) IfS =@ thenL(S) = @.

2) FSNF # @thenL(S) = {e}.

3) fS+@andSNF # @then L(S) = Ug;—qya; - L(Sy),
where L(S;) = §(S, a;).

 This leads directly to a recursive algorithm:

NFAs as starting point

det&min(A)

Input: NFA A = (0, %,9, Qp, F)

Output: master state recognizing L(A)
1 return srate(Q)

state(S)
Input: set S C Q recognizing languages of the same length
Output: state recognizing L(S)

| if G(S) 1s not empty then return G(S)

2 else if S = () then return g

3 else if S N F # () then return ¢,

4 else /*S #0andSNF=0x/

5 foralli=1,....mdo S; « 6(S,qa;)

6 G(S) « make(state(S), ..., state(S ,,));

7 return G(S)

NFAs as starting point

€, 3

n—1 [[n,0-1

N\

a5

/

E- 2

B,y—4

d,6,{— 3

n—1 n0—-1

E- 2

/ \

O—0 ne 1

Implementing operations on relations

e Assumptions:

— Objects are encoded as words of X" (one word for each object)

— Pairs of objects are encoded as words of (X x X)™. Recall:
Xt x ¥ and (X x X)™ are isomorphic.

— Observe: both objects and pairs of objects are so encoded as
words of length n, but over different alphabets.

 Notation: Given R € " x X" we denote
Rlabl = £ (w, w,) € Z" x =" | (aw,,bw,) ER}.

 Master transducer: Master automaton over the
alphabet £ % X.

Implementing fixed-length join

* The algorithm follows from:
1) DoR=Ro(@=0

2) {le el}otle el} ={le €l}
3) If R{, R, have length at least 1, then

Rl ° Rz — U [a’ b] . (R:Ea,C] o R£C,b])

a,b,cex

Implementing fixed-length join

join(ry, r2)

Input: states rq, r of transducer table

Output: state recognizing L(ry) o L(rp)

if G(ry, r2) 1s not empty then return G(ry,)

if r; = g¢ or r, = gp then return g

else if | = g and r; = g, then return ¢,

else /xqgy#ri #qgeand gy # 12 # Ge * /
for all (a;,a;) e X x X do

. .. . ay,a;] .. . lam.ail
rij < union (join (rll“’ @l ry), ..., join (rlla’] ry "))

G(I’], f'z) = ’nake(r],la ceeg ey rm,m)
return G(ry,)

W N -

0o 9 N n B

Implementing fixed-length pre and post

* The algorithm for pre (post is analogous) follows from:
1) fR=@orL =0Qthenpregy =0

2) IfR ={[e,e]}and L = {e} then preg) = {€}

3) f@ +R +{|e,e]}and @ = L + {e} then

preg(L) = U a - Preé,ap (L%)
a,bex
Proof of 3): aw| € prep(L)
dbw, € L: [awi,bw>r] € R
db e X Iw, € LP: [w, wy] € R4V
b € 2: wy € preplan (Lb)

awy| € U a - prepiab) (Lb)
beX

g 0023

Implementing fixed-length pre and post

pre(r,q)
Input: state r of transducer table, state g of automaton table
Output: state recognizing pre; ,,(L(q))
if G(r, g) 1s not empty then return G(r, q)
if r = ryp or g = gy then return g
else if r = r. and g = ¢, then return ¢,
else
for all a; € X do
q; < union (pre (r[""" g%) s pre (r["""""], q""'))
G(q,r) < make(q,,...,q,,)
return G(q,r)

0 N N B WO -

Implementing projection

» \We reduce projection to pre.

 Clearly: The projection of alanguage R € £* x X*onto
the first component is the language prep (£%)

» Specializing the algorithm for pre we obtain:

pro(r)
Input: state r of transducer table
Output: state recognizing proj,(L(r))

1 if G(r) 1s not empty then return G(r)

2 if = ry then return g

3 else if » = r. then return ¢

4 else

5 for all ¢; € Z do

6 q; «— union (prol (r[“"'“ ']) pro, (r["""""]))
7 G(r) « make(q,, ..., qn)

8 return G(r)

Decision Diagrams (DDs)

Decision Diagrams (DDs)

A decision diagram Is an automaton
= whose transitions are labeled by regular expressions of the
formaX™, n = 0, and
= satisfies the following determinacy condition for every
state g and letter a: there is exactly one k = 0 such that

§(q,az¥) # @, and for this k there is a state ¢’ such that
§(q,az¥) = {q'}.
Observe: Every DFA is a DD.
A fixed-length language L isa kernel if L = @, L = {e}, or there
are a,b € X such that L* # L?.
The kernel (L) of a fixed-length language L is the unique kernel
satisfying L = *(L) for some k > 0. Observe: k and (L)
uniquely determine L for every L # Q.

The master decision diagram

o All kernels as states, {€} as final state, transitions (K, aZ¥, (K %))

@)a, baa, bab, bba, bbb}
a

bx?

Reduction rule

 Proposition: The unigue minimal DD for a kernel is the
fragment of the master DD rooted at the kernel (modulo labels
of transitions leaving the states @ and {e}).

* Proposition: The minimal DD for a kernel is obtained from its
minimal DFA by exhaustively applying the following ,,reduction
rule®:

Data structure for kernels

e The structure representing the set of kernels
L={Lq,...,Ly,}Is the fragment of the master DD containing
states Lq, ..., L,,, and their descendants.

e Itisamulti-DD, I.e., a DD with multiple initial states.

L,

b

Data structure for kernels

We represent multi-DDs as tables of kernodes .
A kernode is a triple (g, L, s) where

— g Is a state identifier,

— lisalength, and

— s =1(qq,...,q,) IS asuccessor tuple.

The table for a multi-DD contains a node for each state but the states

for @ and €.
L,

Ident. | Length | a-succ b-succ

2 | 1 0
4 | 0]
b 6 2 2]

Implementing intersection

* Given kernels K, K, of languages L4, L,, we wish to compute
Ki MK, =(L; NLy).

* \We have
1. fK,=0orK, =@thenK, N K, = 0.
2. If Ky # @ + K, then
(e bk, nK,) ifly<l,
KinNK, =4(K; nzhkK,) ifl, <l
L (K1 NK3) it =1
3. If I; < I, then ((E271K, nK,)") = K; M (K)
4. 1f 1, < I then ((K; nTh~22K,)"y = (K#) N K,
5. I1fl; =1, then ((K; N K,)%) = (K{) N (KS)
e 3.-5.lead to a recursive algorithm

Implementing intersection

kinter(qy,q>)
Input: states g, g» recognizing (L), {L,)
Output: state recognizing (L) N Ly)

1 if G(q1,q>) is not empty then return G(q,, ¢>)
2 if g = gg or g2 = gp then return gy

3 if g # gp and ¢> # qp then

4 if /; <[> /* lengths of the kernodes for ¢, g» */ then
5 foralli=1,...,mdo r; « kinter(q1,q5)
6 G(q1,q>) « kmake(l,ry,..., I'm)

7 elseif /; [» then

8 foralli=1,....,mdor; « kinter(q{', q>)
9 G(ql,qg) «— kmake(l|,r|,...,r,,,)
10 else /[y =1 #/
11 foralli=1,...,mdo r; « kinter(4}', q3')
12 G(q1,q2) < kmake(ly,ry,...,ry)

13 return G(qi,q>)

Implementing intersection

Implementing intersection

12,13 =15

7(

15,1 5| MIHN

2,12

[L1-1]|[0,1=0][0,1=0][LL1=1] [1,1-1][0,1- 0]

10,0 0| [0,0 0]

