Pattern Matching

Pattern Matching

- Given
- a word w (the text) of length n, and
- a regular expression p (the pattern) of length m determine
- the smallest number k^{\prime} such that some [$\left.k, k^{\prime}\right]$-factor of w belongs to $L(p)$.

NFA-based solution

PatternMatchingNFA($t, p)$
Input: text $t=a_{1} \ldots a_{n} \in \Sigma^{+}$, pattern $p \in \Sigma^{*}$
Output: the first occurrence of p in t, or \perp if no such occurrence exists.

```
\(1 \quad A \leftarrow \operatorname{RegtoNFA}\left(\Sigma^{*} p\right)\)
\(2 \quad S \leftarrow Q_{0}\)
3 for all \(k=0\) to \(n-1\) do
\(4 \quad\) if \(S \cap F \neq \emptyset\) then return \(k\)
\(5 \quad S \leftarrow \delta\left(S, a_{k+1}\right)\)
6 return \(\perp\)
```

- Line 1 takes $O\left(\mathrm{~m}^{3}\right)$ time $\left(O\left(\mathrm{~m}^{2}\right)\right.$ for fixed alphabet), output has $O(\mathrm{~m})$ states
- Loop is executed at most n times
- One iteration takes $O\left(s^{2}\right)$ time, where s is the number of states of A
- Since $s=O(m)$, the total runtime is $O\left(m^{3}+n m^{2}\right)$, and $O\left(n m^{2}\right)$ for $m \leq n$.

DFA-based solution

PatternMatchingDFA(t, p)
Input: text $t=a_{1} \ldots a_{n} \in \Sigma^{+}$, pattern p
Output: the first occurrence of p in t, or \perp if no such occurrence exists.
$1 \quad A \leftarrow \operatorname{NFAtoDFA}\left(\operatorname{RegtoNFA}\left(\Sigma^{*} p\right)\right)$
$2 \quad q \leftarrow q_{0}$
3 for all $k=0$ to $n-1$ do
$4 \quad$ if $q \in F$ then return k
$5 \quad q \leftarrow \delta\left(q, a_{k+1}\right)$
6 return \perp

- Line 1 takes $2^{O(m)}$ time
- Loop is executed at most n times
- One iteration takes constant time
- Total runtime is $O(n)+2^{O(m)}$

The word case

- The pattern $p=b_{1} b_{2} \ldots b_{m}$ is a word of length m
- Naive algorithm: move a window of size m along the word one letter at a time, and compare with p after each step. Runtime: $O(\mathrm{~nm})$
- We give an algorithm with $O(n+m)$ runtime for any alphabet of size $0 \leq|\Sigma| \leq n$.
- First we explore in detail the shape of the DFA for $\Sigma^{*} p$.

Obvious NFA for $\Sigma^{*} p$ and $p=n a n o$

Result of applying NFAtoDFA:

Intuition

- Transitions of the „spine" correspond to hits: the next letter is the one that „makes progress" towards nano
- Other transitions correspond to misses, i.e., „,wrong letters" and „throw the automaton back"

Observations

- For every state $i=0,1, \ldots, 4$ of the NFA there is exactly one state S of the DFA such that i is the largest state of S.
- For every state S of the DFA, with the exception of $S=\{0\}$, the result of removing the largest state is again a state of the DFA.

Observations

- For every state $i=0,1, \ldots, 4$ of the NFA there is exactly one state S of the DFA such that i is the largest state of S.
- For every state S of the DFA, with the exception of $S=\{0\}$, the result of removing the largest state is again a state of the DFA.
- Do these properties hold for every pattern p ?

Heads and tails, hits and misses

- Head of S, denoted $h(S)$: largest state of S
- Tail of S, denoted $t(S)$: rest of the state
- Example: $h(\{3,1,0\})=3, t(\{3,1,0\})=\{1,0\}$
- Given a state S, the letter leading to the next state in the „spine" is the (unique) hit letter for S
- All other letters are miss letters for S
- Example: hit for $\{3,1,0\}$ is o, whereas n or a are misses

Fundamental property of the DFA

- Proposition: Let S_{k} be the k-th state picked from the workset during the execution of $\operatorname{NFAtoDFA}\left(A_{p}\right)$.
(1) $h\left(S_{k}\right)=k$,
(2) If $k>0$, then $t\left(S_{k}\right)=S_{l}$ for some $l<k$

Proof Idea:

(1) and (2) hold for $S_{0}=\{0\}$.

- For the step $k \rightarrow k+1$ we look at $\delta\left(S_{k}, a\right)$ for each a, where δ transition relation of A_{p}.
- By i.h. we have $S_{k}=\{k\} \cup S_{l}$ for some $l<k$

We distinguish two cases: a is a hit for S_{k} (that is, $a=b_{k+1}$), and a is a miss for S_{k}.

- $S_{k}=\{k\} \cup S_{l}$ for some $l<k$

$$
\delta\left(S_{k}, a\right)=\delta(k, a) \cup \delta\left(S_{l}, a\right)
$$

$$
\begin{array}{cccc}
& \{k\} & \cup & S_{l} \\
\text { Hit: } & \mathrm{a} \downarrow & & \mathrm{a} \downarrow \\
& \{k+1\} & \cup & \delta\left(S_{l}, a\right)
\end{array}
$$

- $S_{k}=\{k\} \cup S_{l}$ for some $l<k$
- $\delta\left(S_{k}, a\right)=\delta(k, a) \cup \delta\left(S_{l}, a\right)$

$$
\begin{array}{cccc}
& \{k\} & \cup & S_{l} \\
\text { Hit: } & \mathrm{a} \downarrow & & \mathrm{a} \downarrow \\
& \{k+1\} & \cup & \delta\left(S_{l}, a\right)
\end{array}
$$

Added earlier to the workset, and so some $S_{l^{\prime}}$

- $S_{k}=\{k\} \cup S_{l}$ for some $l<k$
- $\delta\left(S_{k}, a\right)=\delta(k, a) \cup \delta\left(S_{l}, a\right)$

$$
\text { Hit: } \begin{array}{cccc}
& \{k\} & \cup & S_{l} \\
& & & \mathrm{a} \downarrow \\
& \{k+1\} & \cup & \delta\left(S_{l}, a\right) \\
& & & = \\
& \{k+1\} & \cup & S_{l^{\prime}}
\end{array}
$$

- $S_{k}=\{k\} \cup S_{l}$ for some $l<k$
- $\delta\left(S_{k}, a\right)=\delta(k, a) \cup \delta\left(S_{l}, a\right)$

$$
\begin{array}{cccc}
& \{k\} & \cup & S_{l} \\
\text { Hit: } & \mathrm{a} & & \mathrm{a} \downarrow \\
& \begin{array}{cccc}
& \downarrow+1\} & \cup & \delta\left(S_{l}, a\right) \\
& = & & =
\end{array} \\
& \{k+1\} & \cup & S_{l^{\prime}}
\end{array} \begin{gathered}
\begin{array}{c}
\text { New state, gets } \\
\text { added to the } \\
\text { workset }
\end{array}
\end{gathered}
$$

- $S_{k}=\{k\} \cup S_{l}$ for some $l<k$
- $\delta\left(S_{k}, a\right)=\delta(k, a) \cup \delta\left(S_{l}, a\right)$
$\begin{array}{cccc} & \{k\} & \cup & S_{l} \\ \text { Miss: } & \mathrm{a} \downarrow & & \mathrm{a} \downarrow \\ & \emptyset & \cup & \delta\left(S_{l}, a\right)\end{array}$
- $S_{k}=\{k\} \cup S_{l}$ for some $l<k$
- $\delta\left(S_{k}, a\right)=\delta(k, a) \cup \delta\left(S_{l}, a\right)$
$\begin{array}{cccc} & \{k\} & \cup & S_{l} \\ \text { Miss: } & \mathrm{a} \downarrow & & \mathrm{a} \downarrow \\ & \emptyset & \cup & \delta\left(S_{l}, a\right) \\ & & & = \\ & & & S_{l^{\prime}}\end{array}$
- $S_{k}=\{k\} \cup S_{l}$ for some $l<k$
- $\delta\left(S_{k}, a\right)=\delta(k, a) \cup \delta\left(S_{l}, a\right)$
\(\begin{array}{cccc} \& \{k\} \& \cup \& S_{l}

Miss: \& \mathrm{a} \downarrow \& \& \mathrm{a} \downarrow

\& \emptyset \& \cup \& \delta\left(S_{l}, a\right)

\& =

\)| $\begin{array}{l}\text { Already seen, is } \\ \text { not added to } \\ \text { the workset }\end{array}$ | |
| :--- | :--- | \& \& $S_{l^{\prime}}\end{array}$

Consequences

Prop: The result of applying NFAtoDFA $\left(A_{p}\right)$, where A_{p} is the obvious NFA for $\Sigma^{*} p$, yields a minimal DFA with $m+1$ states and $|\Sigma|(m+1)$ transitions.
Proof: All states of the DFA accept different languages.

So: concatenating NFAtoDFA and PatternMatchingDFA yields a $O(n+|\Sigma| m)$ algorithm.

- Good enough for constant alphabet
- Not good enough for $|\Sigma|=\Omega(n)$

Lazy DFAs

- We introduce a new data structure: lazy DFAs. We construct a lazy DFA for $\Sigma^{*} p$ with $m+1$ states and $2 m+2$ transitions.
- Lazy DFAs: automata that read the input from a tape by means of a reading head that can move one cell to the right or stay put
- DFA=Lazy DFA whose head never stays put

Lazy DFA for $\Sigma^{*} p$

- By the fundamental property, the DFA B_{p} for $\Sigma^{*} p$ behaves from state S_{k} as follows:
- If a is a hit, then $\delta_{B}\left(S_{k}, a\right)=S_{k+1}$, i.e., the DFA moves to the next state in the spine.
- If a is a miss, then $\delta_{B}\left(S_{k}, a\right)=\delta_{B}\left(t\left(S_{k}\right), a\right)$, i.e., the DFA moves to the same state it would move to if it were in state $t\left(S_{k}\right)$.
- When a is a miss for S_{k}, the lazy automaton moves to state $t\left(S_{k}\right)$ without advancing the head. In other words, it „delegates" doing the move to $t\left(S_{k}\right)$
- So the lazyDFA behaves the same for all misses.

- Formally, for the lazy DFA C :
$-\delta_{C}\left(S_{k}, a\right)=\left(S_{k+1}, R\right)$ if a is a hit
$-\delta_{C}\left(S_{k}, a\right)=\left(t\left(S_{k}\right), N\right)$ if a is a miss
- So the lazy DFA has $m+1$ states and $2 m$ transitions.
- It can be constructed in $O(m)$ space:
- For each $0 \leq k \leq n$, compute and store S_{k} with
- $S_{0}:=\{0\}$, and
- $S_{k+1}:=\delta_{A}\left(S_{k}, b_{k+1}\right)$,
- Compute the transitions as at the top of the slide.
- Running the lazy DFA on the text takes $O(n)$ time:
- For every text letter the lazy DFA performs a sequence of „stay put" steps followed by a „right" step. Call this sequence a macrostep.
- Let $S_{j_{i}}$ be the state after the i-th macrostep. The number of steps of the i-th macrostep is at most $j_{i-1}-j_{i}+2$.
So the total number of steps is at most
$\sum_{i=1}^{n}\left(j_{i-1}-j_{i}+2\right)=j_{0}-j_{n}+2 n \leq 2 n$

Computing the lazy DFA in $O(m)$ time

- For the $O(m+n)$ bound it remains to show that the lazy DFA can be constructed in $O(m)$ time.
- Let $\operatorname{Miss}(k)$ be the head of the state reached from S_{k} by a miss.
- It is easy to compute each of $\operatorname{Miss}(0), \ldots, \operatorname{Miss}(m)$ in $O(m)$ time, leading to a $O\left(n+m^{2}\right)$ time algorithm.
(Compute the S_{k} and use $\operatorname{Miss}(k)=h\left(t\left(S_{k}\right)\right)$.)
- Already good enough for almost all purposes. But, can we compute all of $\operatorname{Miss}(0), \ldots, \operatorname{Miss}(m)$ together in time $O(m)$? Looks impossible!
- It isn't though ...

For $i>1$ we have:

$$
\begin{array}{rlc}
t\left(S_{i}\right) & = & t\left(\delta_{B}\left(S_{i-1}, b_{i}\right)\right) \\
& = & t\left(\delta_{A}\left(\{i-1\}, b_{i}\right) \cup \delta_{A}\left(t\left(S_{i-1}\right), b_{i}\right)\right) \\
& = & t\left(\{i\} \cup \delta_{A}\left(t\left(S_{i-1}\right), b_{i}\right)\right) \\
& = & \delta_{B}\left(t\left(S_{i-1}\right), b_{i}\right)
\end{array}
$$

For $i>1$ we have:

$$
\begin{array}{rlc}
t\left(S_{i}\right) & = & t\left(\delta_{B}\left(S_{i-1}, b_{i}\right)\right) \\
& = & t\left(\delta_{A}\left(\{i-1\}, b_{i}\right) \cup \delta_{A}\left(t\left(S_{i-1}\right), b_{i}\right)\right) \\
& = & t\left(\{i\} \cup \delta_{A}\left(t\left(S_{i-1}\right), b_{i}\right)\right) \\
& = & \delta_{B}\left(t\left(S_{i-1}\right), b_{i}\right)
\end{array}
$$

Define $\operatorname{miss}\left(S_{i}\right):=t\left(S_{i}\right)$ (that is, $\operatorname{Miss}(k)=h\left(\operatorname{miss}\left(S_{i}\right)\right)$. We get:

$$
\begin{aligned}
\operatorname{miss}\left(S_{i}\right) & = \begin{cases}S_{0} & \text { if } i=0 \text { or } i=1 \\
\delta_{B}\left(\operatorname{miss}\left(S_{i-1}\right), b_{i}\right) & \text { if } i>1\end{cases} \\
\delta_{B}\left(S_{j}, b\right) & = \begin{cases}S_{j+1} & \text { if } b=b_{j+1} \text { (hit) } \\
S_{0} & \text { if } b \neq b_{j+1} \text { (miss) and } j=0 \\
\delta_{B}\left(\operatorname{miss}\left(S_{j}\right), b\right) & \text { if } b \neq b_{j+1} \text { (miss) and } j \neq 0\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{miss}\left(S_{i}\right) & = \begin{cases}S_{0} & \text { if } i=0 \text { or } i=1 \\
\delta_{B}\left(\operatorname{miss}\left(S_{i-1}\right), b_{i}\right) & \text { if } i>1\end{cases} \\
\delta_{B}\left(S_{j}, b\right) & = \begin{cases}S_{j+1} & \text { if } b=b_{j+1} \text { (hit) } \\
S_{0} & \text { if } b \neq b_{j+1} \text { (miss) and } j=0 \\
\delta_{B}\left(\operatorname{miss}\left(S_{j}\right), b\right) & \text { if } b \neq b_{j+1} \text { (miss) and } j \neq 0\end{cases}
\end{aligned}
$$

- With $\operatorname{Miss}(i):=h\left(\operatorname{miss}\left(S_{i}\right)\right)$ we get the following algorithm:

CompMiss (p)
Input: pattern $p=b_{1} \cdots b_{m}$.
Output: heads of targets of miss transitions.
$\begin{array}{ll}1 & \operatorname{Miss}(0) \leftarrow 0 ; \operatorname{Miss}(1) \leftarrow 0 \\ 2 & \text { for } i \leftarrow 2, \ldots, m \text { do } \\ 3 & \operatorname{Miss}(i) \leftarrow \operatorname{DeltaB}\left(\operatorname{Miss}(i-1), b_{i}\right)\end{array}$
$\operatorname{DeltaB}(j, b)$
Input: head $j \in\{0, \ldots, m\}$, letter b.
Output: head of the state $\delta_{B}\left(S_{j}, b\right)$.
$1 \quad$ while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow \operatorname{Miss}(j)$
2 if $b=b_{j+1}$ then return $j+1$
3 else return 0

- Observe: the values Miss(j) required by each call of DeltaB have already been computed when they are needed.

CompMiss(p)

Input: pattern $p=b_{1} \cdots b_{m}$.
Output: heads of targets of miss transitions.
$1 \operatorname{Miss}(0) \leftarrow 0 ; \operatorname{Miss}(1) \leftarrow 0$
2 for $i \leftarrow 2, \ldots, m$ do
$3 \quad \operatorname{Miss}(i) \leftarrow \operatorname{DeltaB}\left(\operatorname{Miss}(i-1), b_{i}\right)$

DeltaB($j, b)$
Input: head $j \in\{0, \ldots, m\}$, letter b.
Output: head of the state $\delta_{B}\left(S_{j}, b\right)$.
$1 \quad$ while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow \operatorname{Miss}(j)$
2 if $b=b_{j+1}$ then return $j+1$
3 else return 0

All calls to DeltaB lead together to $O(m)$ iterations of the while loop.
The call DeltaB (Miss $\left.(i-1), b_{i}\right)$ executes at most
$\operatorname{Miss}(i-1)-(\operatorname{Miss}(i)-1)$ iterations, because:

- initially j is assigned $\operatorname{Miss}(i-1)$ (line 3 of CompMiss)
- each iteration decreases j by at least 1
(line 1 of DeltaB, $\operatorname{Miss}(j)<j$)
- the return value assigned to
$\operatorname{Miss}(i)$ is at most the final value of j plus 1.
(line 2 of DeltaB)
- Total number of iterations:

$$
\begin{aligned}
& \sum_{i=2}^{m}(\operatorname{Miss}(i-1)-\operatorname{Miss}(i)+1) \\
= & \operatorname{Miss}(1)-\operatorname{Miss}(m)+m-1 \\
\leq & m
\end{aligned}
$$

