
Pattern	Matching



Pattern	Matching

• Given
- a	word	𝑤 (the	text)	of	length	𝑛,	and
- a	regular	expression	p	(the	pattern)	of	length	𝑚
determine
- the	smallest	number	𝑘′ such	that	some	

𝑘, 𝑘' -factor	of	𝑤 belongs	to	𝐿(𝑝).



• Line	1	takes		𝑂(𝑚-) time	(𝑂 𝑚. for	fixed	alphabet)	,	output	has	𝑂(𝑚)
states	

• Loop	is	executed		at	most		𝑛 times
• One	iteration	takes		𝑂(𝑠.) time	,	where	𝑠 is	the	number	of	states	of	𝐴
• Since	𝑠 = 𝑂(𝑚),	the	total	runtime	is	𝑂 𝑚- + 𝑛𝑚. ,	and 𝑂(𝑛𝑚.) for
𝑚	 ≤ 𝑛 .

NFA-based	solution



• Line	1	takes		26(7) time
• Loop	is	executed		at	most		𝑛 times
• One	iteration	takes	constant	time
• Total	runtime	is		𝑂 𝑛 + 26(7)

DFA-based solution



The	word	case

• The	pattern	𝑝 = 𝑏9𝑏. …𝑏7 is	a	word	of	length	𝑚
• Naive	algorithm:	move	a	window	of	size	m	along	
the	word	one	letter	at	a	time,	and	compare	with	
p	after	each	step.	Runtime:	𝑂(𝑛𝑚)	

• We	give	an	algorithm	with	𝑂(𝑛 +𝑚) runtime	for	
any alphabet	of	size	0 ≤ Σ ≤ 𝑛 .

• First	we	explore	in	detail	the	shape	of	the	DFA	for	
Σ∗𝑝 .



Obvious	NFA	for	Σ∗𝑝 and	𝑝 = 𝑛𝑎𝑛𝑜

Result	of	applying NFAtoDFA:





• Transitions	of	the	„spine“	correspond	to	hits:	the	next	letter	
is	the	one		that	„makes	progress“	towards	nano

• Other	transitions	correspond	to	misses,	i.e.,	„wrong	letters“	
and	„throw	the	automaton	back“

Intuition



• For	every	state		𝑖 = 	0,1, … , 4	of	the	NFA		there	is	exactly	one	
state	𝑆 of	the	DFA	such	that	𝑖 is	the	largest	state	of	𝑆.

• For	every	state	𝑆 of	the	DFA,	with	the	exception	of	𝑆 = {0},	the	
result	of	removing	the	largest	state	is	again	a	state	of	the	DFA.

Observations



• For	every	state		𝑖 = 	0,1, … , 4	of	the	NFA		there	is	exactly	one	
state	𝑆 of	the	DFA	such	that	𝑖 is	the	largest	state	of	𝑆.

• For	every	state	𝑆 of	the	DFA,	with	the	exception	of	𝑆 = {0},	the	
result	of	removing	the	largest	state	is	again	a	state	of	the	DFA.

• Do	these	properties	hold	for	every	pattern		𝑝?

Observations



• Head of	𝑆,	denoted	ℎ(𝑆) :	largest	state	of	𝑆
• Tail of	𝑆,	denoted		𝑡 𝑆 :	rest	of	the	state
• Example:	ℎ({3,1,0}) = 	3, 𝑡({3,1,0}) = 	 {1,0}

• Given	a	state	𝑆,	the	letter	leading	to	the	next	state	in	
the	„spine“		is	the	(unique)	hit	letter	for 𝑆

• All	other	letters	are	miss	letters	for	𝑆
• Example:	hit	for	{3,1,0} is	𝑜,	whereas	𝑛 or	𝑎 are	
misses

Heads	and tails,	hits and misses



• Proposition:	Let	𝑆I be	the	𝑘-th	state	picked	from	the workset
during	the	execution	of	NFAtoDFA(𝐴J).

(1) ℎ 𝑆I = 𝑘,
(2) If 𝑘 > 0,	then	𝑡 𝑆I = 𝑆L for	some	𝑙 < 𝑘

Proof	Idea:	

• (1)	and	(2)	hold	for	𝑆O = {0}.
• For the	step	𝑘 → 𝑘 + 1 we	look	at	𝛿 𝑆I, 𝑎 for	each	𝑎,	where	

𝛿 transition	relation	of	𝐴J .

• By	i.h.	we	have		𝑆I = 𝑘 ∪	𝑆L for	some		𝑙 < 𝑘
• We	distinguish	two	cases:	𝑎 is a	hit	for	𝑆I (that is,	𝑎 = 𝑏IT9),	

and	𝑎 is	a	miss	for	𝑆I .

Fundamental	property of the DFA



• δ 𝑆I, 𝑎 = 𝛿 𝑘, 𝑎 	∪ 	𝛿(𝑆L, 𝑎)

• 𝑆I = 𝑘 ∪ 𝑆L for	some		𝑙 < 𝑘

Hit:
𝑘 	 ∪ 𝑆L

𝑘 + 1 ∪ 𝛿(𝑆L, 𝑎)

a a



• δ 𝑆I, 𝑎 = 𝛿 𝑘, 𝑎 	∪ 	𝛿(𝑆L, 𝑎)

Hit:
𝑘 	 ∪ 𝑆L

𝑘 + 1 ∪ 𝛿(𝑆L, 𝑎)

a a

Added earlier to the
workset,	and	so	some	𝑆LV

• 𝑆I = 𝑘 ∪ 𝑆L for	some		𝑙 < 𝑘



• δ 𝑆I, 𝑎 = 𝛿 𝑘, 𝑎 	∪ 	𝛿(𝑆L, 𝑎)

Hit:
𝑘 	 ∪ 𝑆L

𝑘 + 1 ∪ 𝛿(𝑆L, 𝑎)

a a

𝑘 + 1 ∪ 𝑆LV
= =

• 𝑆I = 𝑘 ∪ 𝑆L for	some		𝑙 < 𝑘



• δ 𝑆I, 𝑎 = 𝛿 𝑘, 𝑎 	∪ 	𝛿(𝑆L, 𝑎)

Hit:
𝑘 	 ∪ 𝑆L

𝑘 + 1 ∪ 𝛿(𝑆L, 𝑎)

a a

𝑘 + 1 ∪ 𝑆LV
= =

• 𝑆I = 𝑘 ∪ 𝑆L for	some		𝑙 < 𝑘

New	state,	gets
added to the
workset



• δ 𝑆I, 𝑎 = 𝛿 𝑘, 𝑎 	∪ 	𝛿(𝑆L, 𝑎)

Miss:
𝑘 	 ∪ 𝑆L

∅ ∪ 𝛿(𝑆L, 𝑎)

a a

• 𝑆I = 𝑘 ∪ 𝑆L for	some		𝑙 < 𝑘



• δ 𝑆I, 𝑎 = 𝛿 𝑘, 𝑎 	∪ 	𝛿(𝑆L, 𝑎)

Miss:
𝑘 	 ∪ 𝑆L

∅ ∪ 𝛿(𝑆L, 𝑎)

a a

𝑆LV
=

• 𝑆I = 𝑘 ∪ 𝑆L for	some		𝑙 < 𝑘



• δ 𝑆I, 𝑎 = 𝛿 𝑘, 𝑎 	∪ 	𝛿(𝑆L, 𝑎)

Miss:
𝑘 	 ∪ 𝑆L

∅ ∪ 𝛿(𝑆L, 𝑎)

a a

𝑆LV
=

• 𝑆I = 𝑘 ∪ 𝑆L for	some		𝑙 < 𝑘

Already seen,	is
not	added to
the workset



Prop:	The	result	of	applying	NFAtoDFA(𝐴J),	where	𝐴J
is	the	obvious	NFA	for	Σ∗𝑝 ,	yields	a	minimal	DFA	with	
𝑚 + 1 states	and	 Σ (𝑚 + 1) transitions.
Proof:	All	states	of	the	DFA	accept	different	languages.

So:	concatenating	NFAtoDFA and	PatternMatchingDFA
yields	a	𝑂(𝑛 + Σ 𝑚) algorithm.	

- Good	enough	for	constant	alphabet	
- Not	good	enough	for	 Σ = Ω(𝑛)

Consequences



Lazy	DFAs

• We	introduce	a	new	data	structure:	lazy	DFAs.	
We	construct	a	lazy	DFA	for	Σ∗𝑝	with	𝑚 + 1
states	and	2𝑚 + 2 transitions.	

• Lazy	DFAs:	automata	that	read	the	input	from	
a	tape	by	means	of	a	reading	head	that	can	
move	one	cell	to	the	right	or	stay	put	

• DFA=Lazy	DFA	whose	head	never	stays	put



Lazy	DFA	for	Σ∗𝑝

• By	the	fundamental	property,	the	DFA	𝐵J for	𝛴∗𝑝
behaves	from	state	𝑆I as	follows:
– If	𝑎 is	a	hit,	then 𝛿[ 𝑆I, 𝑎 = 𝑆IT9 ,	i.e.,	the	DFA	
moves	to	the	next	state	in	the	spine.

– If	𝑎 is	a	miss,	then	𝛿[ 𝑆I, 𝑎 = 𝛿[ 𝑡(𝑆I), 𝑎 ,	i.e.,	the	
DFA	moves	to	the	same	state	it	would	move	to	if	it	
were	in	state	𝑡(𝑆I).

• When	𝑎 is	a	miss	for	𝑆I,	the	lazy	automaton	moves	to	
state	𝑡 𝑆I without	advancing	the	head.	In	other	words,	
it	„delegates“	doing	the	move	to	𝑡 𝑆I

• So	the	lazyDFA	behaves	the	same	for	all	misses.





• Formally,	for the lazy DFA	𝐶:
– 𝛿] 𝑆I, 𝑎 = (𝑆IT9, 𝑅) if	𝑎 is	a	hit
– 𝛿] 𝑆I, 𝑎 = 𝑡(𝑆I), 𝑁 if	𝑎 is	a	miss

• So	the	lazy	DFA	has	𝑚 + 1 states	and	2𝑚
transitions.

• It can be	constructed	in	𝑂(𝑚) space:	
– For each 0 ≤ 𝑘 ≤ 𝑛,	compute	and store 𝑆I with

• 𝑆O ≔ 0 , and
• 𝑆IT9 ≔ 𝛿a 𝑆I, 𝑏IT9 ,	

– Compute the transitions as at	the top	of the slide.	



• Running	the	lazy	DFA	on	the	text	takes	𝑂 𝑛
time:
– For	every	text	letter the lazy DFA	performs a	
sequence	of	„stay	put“	steps	followed	by	a	„right“	
step.	Call	this sequence a	macrostep.

– Let		𝑆bc be	the	state	after	the	𝑖-th	macrostep.	The	
number	of	steps	of	the	𝑖-th	macrostep	is	at	most	
𝑗ef9 − 𝑗e + 2 .	
So	the	total	number	of	steps	is	at	most	

h 𝑗ef9 − 𝑗e + 2 = 𝑗O − 𝑗i + 2𝑛	 ≤ 2𝑛		
i

ej9



Computing	the lazy DFA	in	𝑂(𝑚) time

• For	the	𝑂(𝑚 + 𝑛) bound	it	remains	to	show	that	the	lazy	DFA	
can	be	constructed	in	𝑂(𝑚) time.

• Let	M𝑖𝑠𝑠(𝑘) be	the	head	of	the	state	reached	from	𝑆I by	a	
miss.

• It	is	easy	to	compute	each	of		𝑀𝑖𝑠𝑠 0 , … ,𝑀𝑖𝑠𝑠 𝑚 in	𝑂(𝑚)
time,	leading	to	a	𝑂(𝑛 +𝑚.) time	algorithm.
(Compute the 𝑆I and use𝑀𝑖𝑠𝑠 𝑘 = ℎ(𝑡 𝑆I ).)

• Already	good	enough	for	almost	all	purposes.	But,	can	we	
compute	all of	𝑀𝑖𝑠𝑠 0 , … ,𝑀𝑖𝑠𝑠 𝑚 together in	time	
𝑂 𝑚 ?	 Looks	impossible!

• It	isn‘t		though	...



For	𝑖 > 1 we	have:	

𝑡(𝑆e) = 𝑡 	𝛿[ 𝑆ef9, 𝑏e 	
= 𝑡 𝛿a 𝑖 − 1 , 𝑏e ∪ 𝛿a(𝑡 𝑆ef9 , 𝑏e)
= 𝑡 	 𝑖 ∪ 𝛿a 𝑡 𝑆ef9 , 𝑏e
= 𝛿[ 𝑡 𝑆ef9 , 𝑏e

Define		𝑚𝑖𝑠𝑠 𝑆e : = 𝑡(𝑆e) (that	is,	𝑀𝑖𝑠𝑠 𝑘 = ℎ(𝑚𝑖𝑠𝑠 𝑆e ).	
We	get:



For	𝑖 > 1 we	have:	

𝑡(𝑆e) = 𝑡 	𝛿[ 𝑆ef9, 𝑏e 	
= 𝑡 𝛿a 𝑖 − 1 , 𝑏e ∪ 𝛿a(𝑡 𝑆ef9 , 𝑏e)
= 𝑡 	 𝑖 ∪ 𝛿a 𝑡 𝑆ef9 , 𝑏e
= 𝛿[ 𝑡 𝑆ef9 , 𝑏e

Define 𝑚𝑖𝑠𝑠 𝑆e : = 𝑡(𝑆e) (that	is,	𝑀𝑖𝑠𝑠 𝑘 = ℎ(𝑚𝑖𝑠𝑠 𝑆e ).	
We	get:



• With	𝑀𝑖𝑠𝑠 𝑖 ≔ ℎ(𝑚𝑖𝑠𝑠 𝑆e ) we	get	the	following	algorithm:	

• Observe:	the valuesMiss(j) required by each call of DeltaB have	
already	been	computed	when	they	are	needed.



All	calls	to	DeltaB lead		together
to	𝑂(𝑚) iterations	of	the	while	loop.
The	call		𝐷𝑒𝑙𝑡𝑎𝐵(𝑀𝑖𝑠𝑠(𝑖 − 1), 𝑏e)
executes	at	most	

𝑀𝑖𝑠𝑠(𝑖 − 1) − (𝑀𝑖𝑠𝑠(𝑖) − 1)	
iterations,	because:
• initially 𝑗 is assigned𝑀𝑖𝑠𝑠 𝑖 − 1

(line 3	of CompMiss)
• each iteration decreases 𝑗 by at	

least	1
(line	1	of 𝐷𝑒𝑙𝑡𝑎𝐵,	𝑀𝑖𝑠𝑠 𝑗 < 𝑗)

• the return value assigned to
𝑀𝑖𝑠𝑠 𝑖 is at	most the final value
of 𝑗 plus	1.
(line 2	of 𝐷𝑒𝑙𝑡𝑎𝐵)



• Total	number	of iterations:

h 𝑀𝑖𝑠𝑠 𝑖 − 1 −𝑀𝑖𝑠𝑠 𝑖 + 1 	
7

ej.
= 	𝑀𝑖𝑠𝑠 1 −𝑀𝑖𝑠𝑠 𝑚 +𝑚 − 1
≤ 𝑚


