Operations and tests on sets: Implementation on DFAs

Operations and tests

Universe of objects U, sets of objexts X, Y, object x.

Operations of	on sets
---------------	---------

Complement (<i>X</i>)	:	returns $U \setminus X$.
Intersection (<i>X</i> , <i>Y</i>)	:	returns $X \cap Y$.
Union (X, Y)	:	returns $X \cup Y$.

Tests on sets		
Member(x, X)	:	returns true if $x \in X$, false otherwise.
$\mathbf{Empty}(X)$:	returns true if $X = \emptyset$, false otherwise.
Universal (X)	:	returns true if $X = U$, false otherwise.
Included (X, Y)	:	returns true if $X \subseteq Y$, false otherwise.
$\mathbf{Equal}(X, Y)$:	returns true if $X = Y$, false otherwise.

Implementation on DFAs

- Assumption: each object encoded by one word, and vice versa.
- Membership: trivial algorithm, linear in the length of the word.
- Complement: exchange final and non-final states.
 Linear (or even constant) time.
- Generic implementation of binary boolean operations based on pairing.

Pairing

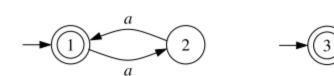
Definition. Let $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ be DFAs.

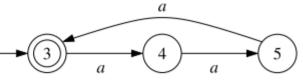
The pairing $[A_1, A_2]$ of A_1 and A_2 is the tuple (Q, Σ, δ, q_0) where

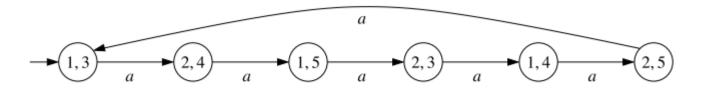
- $Q = \{ [q_1, q_2] \mid q_1 \in Q_1, q_2 \in \}$
- $\delta = \{ ([q_1, q_2], a, [q'_1, q'_2]) \mid (q_1, a, q'_1) \in \delta_1, (q_2, a, q'_2) \in \delta_2 \}$
- $q_0 = [q_{01}, q_{02}]$

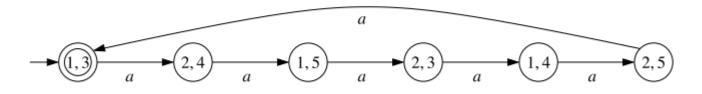
The run of $[A_1, A_2]$ on a word of Σ^* is defined as for DFAs

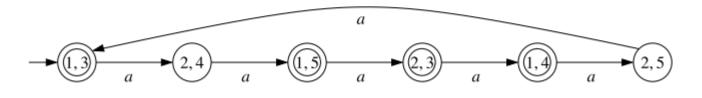
Pairing

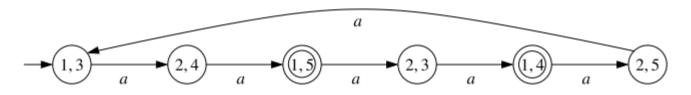












Pairing

• Another example: DFA for the language of words with an even number of *a*s and even number of *b*s (and even number of *c*s ...).

Generic algorihtm for binary boolean operations

- We assign to a binary boolean operator ⊙ an operation on languages ⊙ as follows:
 L₁ ⊙ L₂ = { w ∈ Σ* | (w ∈ L₁) ⊙ (w ∈ L₂) }
- For example:

Language operation	$b_1 \odot b_2$
Union	$b_1 \lor b_2$
Intersection	$b_1 \wedge b_2$
Set difference $(L_1 \setminus L_2)$	$b_1 \wedge \neg b_2$
Union Intersection Set difference $(L_1 \setminus L_2)$ Symmetric difference $(L_1 \setminus L_2 \cup L_2 \setminus L_1)$	$b_1 \Leftrightarrow \neg b_2$

Generic algorihtm for binary boolean operations

BinOp[\odot](*A*₁, *A*₂) **Input:** DFAs *A*₁ = (*Q*₁, Σ , δ_1 , *Q*₀₁, *F*₁), *A*₂ = (*Q*₂, Σ , δ_2 , *Q*₀₂, *F*₂) **Output:** DFA *A* = (*Q*, Σ , δ , *Q*₀, *F*) with *L*(*A*) = *L*(*A*₁) $\widehat{\odot}$ *L*(*A*₂)

- 1 $Q, \delta, F \leftarrow \emptyset$
- $2 \quad q_0 \leftarrow [q_{01}, q_{02}]$
- $3 \quad W \leftarrow \{q_0\}$
- 4 while $W \neq \emptyset$ do
- 5 **pick** $[q_1, q_2]$ from W
- 6 **add** $[q_1, q_2]$ **to** *Q*
- 7 **if** $(q_1 \in F_1) \odot (q_2 \in F_2)$ then add $[q_1, q_2]$ to *F*
- 8 for all $a \in \Sigma$ do

9
$$q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a)$$

- 10 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 11 **add** $([q_1, q_2], a, [q'_1, q'_2])$ to δ

Generic algorihtm for binary boolean operations

- Complexity: the pairing of DFAs with n_1 and n_2 states has $O(n_1 \cdot n_2)$ states.
- Hence: for DFAs with n_1 and n_2 states over an alphabet with k letters, binary operations can be computed in $O(k \cdot n_1 \cdot n_2)$ time.
- Further: there is a family of languages for which the computation of intersection takes $\Theta(k \cdot n_1 \cdot n_2)$ time.

Language tests

- Emptiness: a DFA is empty iff it has no final states
- Universality: a DFA is universal iff it has only final states
- Inclusion: $L_1 \subseteq L_2$ iff $L_1 \setminus L_2 = \emptyset$
- Equality: $L_1 = L_2$ iff $(L_1 \setminus L_2) \cup (L_2 \setminus L_1) = \emptyset$

Inclusion test

InclDFA(A_1, A_2) **Input:** DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** true if $L(A_1) \subseteq L(A_2)$, false otherwise

1
$$Q \leftarrow \emptyset;$$

$$2 \quad W \leftarrow \{[q_{01}, q_{02}]\}$$

3 while $W \neq \emptyset$ do

4 **pick**
$$[q_1, q_2]$$
 from W

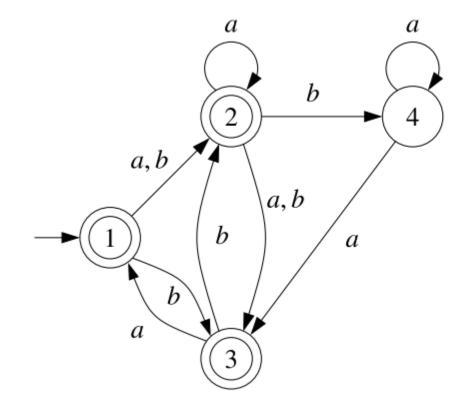
- 5 **add** $[q_1, q_2]$ **to** *Q*
- 6 **if** $(q_1 \in F_1)$ and $(q_2 \notin F_2)$ then return false
- 7 **for all** $a \in \Sigma$ **do**

8
$$q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a)$$

- 9 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 10 return true

Operations and tests on sets: Implementation on NFAs

Membership



Prefix read	W
ϵ	{1}
а	{2}
aa	{2,3}
aaa	$\{1, 2, 3\}$
aaab	$\{2, 3, 4\}$
aaabb	$\{2, 3, 4\}$
aaabba	$\{1, 2, 3, 4\}$

Membership

MemNFA[*A*](*w*) **Input:** NFA $A = (Q, \Sigma, \delta, Q_0, F)$, word $w \in \Sigma^*$, **Output:** true if $w \in \mathcal{L}(A)$, false otherwise

- 1 $W \leftarrow Q_0;$
- 2 while $w \neq \varepsilon$ do
- 3 $U \leftarrow \emptyset$
- 4 for all $q \in W$ do
- 5 **add** $\delta(q, head(w))$ to U
- $6 \qquad W \leftarrow U$
- 7 $w \leftarrow tail(w)$
- 8 return $(W \cap F \neq \emptyset)$

Complexity:

- While loop executed |w| times
- For loop executed at most |Q| times
- Each execution of the loop body takes
 O(|Q|) time
- Overall: $O(|Q|^2 \cdot |w|)$ time

Complement

- Swapping final and non-final states does not work
- Solution: determinize <u>and then</u> swap states
- Problem: Exponential blow-up in size!!
 To be avoided whenever possible!!
- No better way: there are NFAs with n states such that the smallest NFA for their complement has $\Theta(2^n)$ states.

Union and intersection

- The pairing construction still works for and intersection, with the same complexity.
- It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
- Optimal construction for intersection (same example as for DFAs).
- Non-optimal construction for union. There is another construction which produces an NFA with $|Q_1| + |Q_2|$ states, instead of $|Q_1| \cdot |Q_2|$: just put the automata side by side!

Intersection

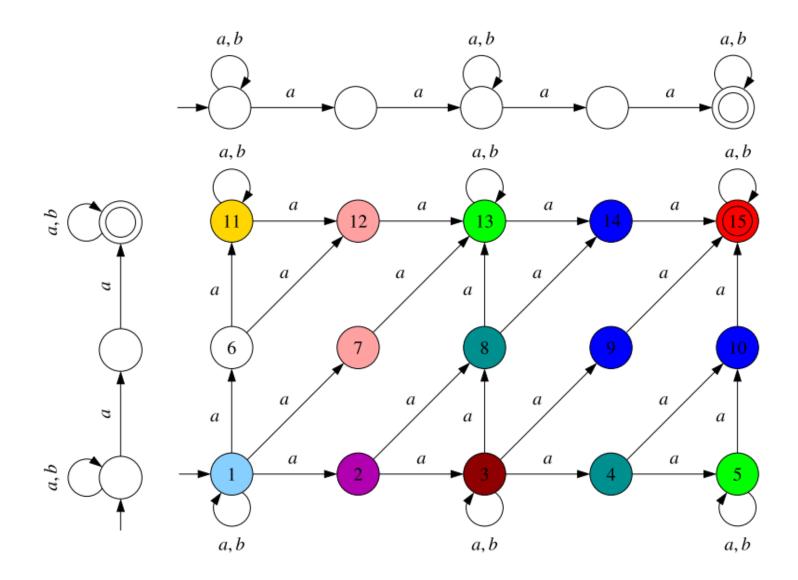
IntersNFA(A_1, A_2) **Input:** NFA $A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2)$ **Output:** NFA $A_1 \cap A_2 = (Q, \Sigma, \delta, Q_0, F)$ with $L(A_1 \cap A_2) = L(A_1) \cap L(A_2)$

1
$$Q, \delta, F \leftarrow \emptyset; Q_0 \leftarrow Q_{01} \times Q_{02}$$

2
$$W \leftarrow Q_0$$

- 3 while $W \neq \emptyset$ do
- 4 **pick** $[q_1, q_2]$ from *W*
- 5 **add** $[q_1, q_2]$ to Q
- 6 **if** $(q_1 \in F_1)$ and $(q_2 \in F_2)$ then add $[q_1, q_2]$ to F
- 7 **for all** $a \in \Sigma$ **do**
- 8 **for all** $q'_1 \in \delta_1(q_1, a), q'_2 \in \delta_2(q_2, a)$ **do**
- 9 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 10 **add** $([q_1, q_2], a, [q'_1, q'_2])$ to δ

Intersection



Emptiness and Universality

- Like DFAs, an NFA is empty iff every state is non-final.
- However, contrary to DFAs, it does not hold that an NFA is universal iff every state is final. Both directions fail!
- Emptiness is decidable in linear time.
- Universality is **PSPACE-complete**.

Crash course on PSPACE

- PSPACE: Class of decision problems for which there is an algorithm that
 - always terminates and returns the correct answer, and
 - only uses polynomial memory in the size of the input.
- $P \subseteq NP \subseteq PSPACE$. It is unknown if the inclusions are strict.
- NPSPACE: Class of decision problems for which there is a nondeterministic algorithm that
 - does not terminate or terminates and answers, no" for noinputs,
 - has at least one terminating execution answering "yes" for yes-inputs, and
 - only uses polynomial memory in the size of the input.
- Savitch's theorem: PSPACE=NPSPACE

Crash course on PSPACE

- **PSPACE-complete**: A problem Π is PSPACE-complete if
 - it belongs to PSPACE, and
 - every PSPACE-problem can be reduced in polynomial time to $\Pi.$
- PSPACE-complete problems:
 - Given a deterministic Turing machine *M* that only visits the cell tapes occupied by the input, and an input *x*, does *M* accept *x* ?
 - Is a given quantified boolean formula true?

Theorem 4.7 The universality problem for NFAs is PSPACE-complete

Proof: We only sketch the proof. To prove that the problem is in PSPACE, we show that it belongs to NPSPACE and apply Savitch's theorem. The polynomial-space nondeterministic algorithm for universality looks as follows. Given an NFA $A = (Q, \Sigma, \delta, Q_0, F)$, the algorithm guesses a run of B = NFAtoDFA(A) leading from $\{q_0\}$ to a non-final state, i.e., to a set of states of A containing no final state (if such a run exists). The algorithm only does not store the whole run, only the current state, and so it only needs linear space in the size of A.

We prove PSPACE-hardness by reduction from the acceptance problem for linearly bounded automata. A linearly bounded automaton is a deterministic Turing machine that always halts and only uses the part of the tape containing the input. A configuration of the Turing machine on an input of length k is coded as a word of length k. The run of the machine on an input can be encoded as a word $c_0 # c_1 \dots # c_n$, where the c_i 's are the encodings of the configurations.

Let Σ be the alphabet used to encode the run of the machine. Given an input *x*, *M* accepts if there exists a word *w* of Σ^* satisfying the following properties:

- (a) w has the form $c_0 # c_1 ... # c_n$, where the c_i 's are configurations;
- (b) c_0 is the initial configuration;
- (c) c_n is an accepting configuration; and
- (d) for every $0 \le i \le n 1$: c_{i+1} is the successor configuration of c_i according to the transition relation of M.

The reduction shows how to construct in polynomial time, given a linearly bounded automaton M and an input x, an NFA A(M, x) accepting all the words of Σ^* that do *not* satisfy at least one of the conditions (a)-(d) above. We then have

- If *M* accepts *x*, then there is a word *w*(*M*, *x*) encoding the accepting run of *M* on *x*, and so L(A(M, x)) = Σ* \ {w(M, x)}.
- If *M* rejects *x*, then no word encodes an accepting run of *M* on *x*, and so $L(A(M, x)) = \Sigma^*$.

So *M* accepts *x* if and only if $L(A(M, x)) = \Sigma^*$, and we are done.

The reduction shows how to construct in polynomial time, given a linearly bounded automaton M and an input x, an NFA A(M, x) accepting all the words of Σ^* that do *not* satisfy at least one of the conditions (a)-(d) above. We then have

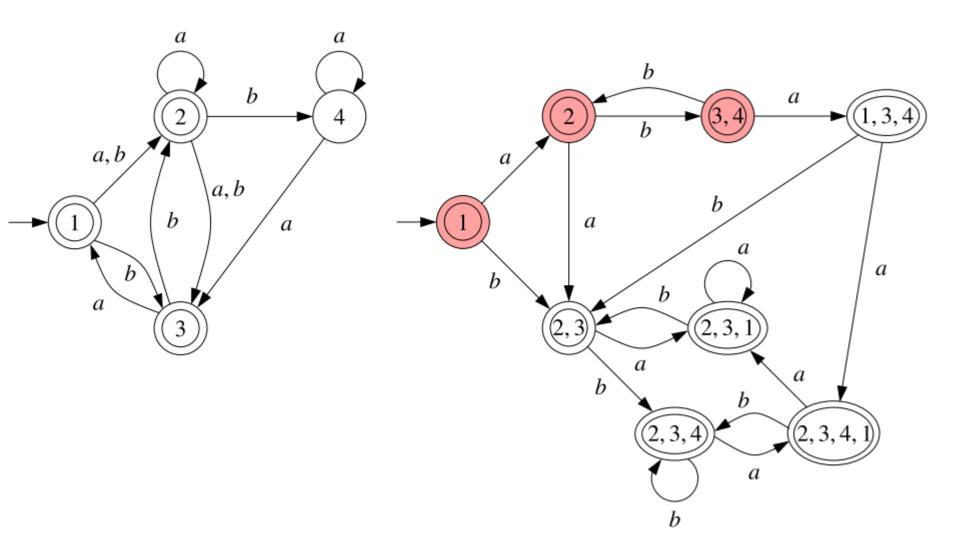
- If *M* accepts *x*, then there is a word *w*(*M*, *x*) encoding the accepting run of *M* on *x*, and so L(A(M, x)) = Σ* \ {w(M, x)}.
- If *M* rejects *x*, then no word encodes an accepting run of *M* on *x*, and so $L(A(M, x)) = \Sigma^*$.

So *M* accepts *x* if and only if $L(A(M, x)) = \Sigma^*$, and we are done.

Deciding universality of NFAs

- Complement and check for emptiness
 Needs exponential time and space.
- Improvements:
 - Check for emptiness <u>while complementing</u> (on-the-fly check).
 - Subsumption test.

- Let A be an NFA and let B = NFAtoDFA(A). A state Q' of B is minimal if no other state Q'' satisfies $Q'' \subset Q'$.
- Proposition: A is universal iff every minimal state of B is final.
 - Proof:
 - A is universal
 - iff B is universal
 - iff every state of *B* is final
 - iff every state of *B* contains a final state of *A*
 - iff every minimal state of *B* contains a final state of *A* iff every minimal state of *B* is final



UnivNFA(A) Input: NFA $A = (Q, \Sigma, \delta, Q_0, F)$ Output: true if $L(A) = \Sigma^*$, false otherwise

1
$$\Omega \leftarrow \emptyset;$$

- 2 $\mathcal{W} \leftarrow \{ \{q_0\} \}$
- 3 while $\mathcal{W} \neq \emptyset$ do
- 4 pick Q' from W
- 5 if $Q' \cap F = \emptyset$ then return false
- 6 add Q' to Q
- 7 **for all** $a \in \Sigma$ **do**

```
8 if \mathcal{W} \cup \mathcal{Q} contains no Q'' \subseteq \delta(Q', a) then add \delta(Q', a) to \mathcal{W}
```

9 return true

• But is it correct ?

By removing a non-minimal state we may be preventing the discovery of a minimal state in the future!

Proposition: Let A be an NFA and let B = NFAtoDFA(A). After termination of UnivNFA(A) the set Q contains all minimal states of B.

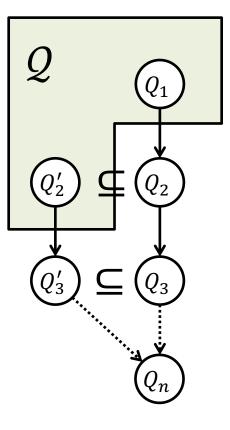
Proof: Assume the contrary. Then *B* has a shortest path $Q_1 \rightarrow Q_2 \rightarrow \dots \rightarrow Q_n$ such that

- $Q_1 \in \mathcal{Q}$ (after termination), and
- $Q_n \notin Q$ and Q_n is minimal.

Since the path is shortest, $Q_2 \notin Q$ and so when *UnivNFA* processes Q_1 , it does not add Q_2 . This can only be because UnivNFA already added some $Q'_2 \subset Q_2$. But then *B* has a path $Q'_2 \rightarrow \dots \rightarrow Q'_n$ with $Q'_n \subseteq Q_n$. Since Q_n is minimal, Q'_n is minimal (actually $Q'_n = Q_n$). So the path $Q'_2 \rightarrow \dots \rightarrow Q'_n$ satisfies

- $Q'_2 \in Q$ (after termination), and
- Q'_n is minimal.

contradicting that $Q_1 \rightarrow Q_2 \rightarrow \dots \rightarrow Q_n$ is shortest.



Inclusion

- **Proposition**: The inclusion problem is PSPACE-complete.
- Proof:

Membership in PSPACE. By Savitch's theorem it suffices to give a nondeterministic algorithm for non-inclusion. For this, guess letter by letter a word, storing the sets of states Q'_1, Q'_2 reached by both NFAs on the word guessed so far. Stop when Q'_1 contains a final state, but Q'_2 does not.

PSPACE-hardness. A is universal iff $L(B) \subseteq L(A)$, where B is the one-state DFA for Σ^* .

- Algorithm: use $L_1 \subseteq L_2$ iff $L_1 \cap \overline{L_2} = \emptyset$
- Concatenate four algorithms:
 - (1) determinize A_2 ,
 - (2) complement the result,
 - (3) intersect it with A_1 , and
 - (4) check for emptiness.
- State of (3): pair (q, Q), where $q \in Q_1$ and $Q \subseteq Q_2$
- Easy optimizations:
 - store only the states of (3), not its transitions;
 - do not perform (1), then (2), then (3); instead, construct directly the states of (3);
 - check (4) while constructing (3).

• Further optimization: subsumption test.

InclNFA(A_1, A_2) **Input:** NFAs $A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2)$ **Output:** true if $L(A_1) \subseteq L(A_2)$, false otherwise

1
$$Q \leftarrow \emptyset$$
;
2 $W \leftarrow \{ [q_{01}, Q_{02}] \mid q_{01} \in Q_{01} \}$
3 while $W \neq \emptyset$ do
4 pick $[q_1, Q_2]$ from W
5 if $(q_1 \in F_1)$ and $(Q_2 \cap F_2 = \emptyset)$ then return false
6 add $[q_1, Q_2]$ to Q
7 for all $a \in \Sigma, q'_1 \in \delta_1(q_1, a)$ do
8 $Q'_2 \leftarrow \delta_2(Q_2, a)$
9 if $W \cup Q$ contains no $[q''_1, Q''_2]$ s.t. $q''_1 = q'_1$ and $Q''_2 \subseteq Q'_2$ then
10 add $[q'_1, Q'_2]$ to W
11 return true

- Complexity:
 - Let A_1, A_2 be NFAs with n_1, n_2 states over an alphabet with k letters.
 - Without the subsumption test:
 - The while-loop is executed at most $n_1 \cdot 2^{n_2}$ times.
 - The for-loop is executed at most $O(k \cdot n_1)$ times.
 - An execution of the for-loop takes $O(n_2^2)$ time.
 - Overall: $O(k \cdot n_1^2 \cdot n_2^2 \cdot 2^{n_2})$ time.
 - With the subsumption case the worst-case complexity is higher. Exercise: give an upper bound.

- Important special case: A_1 is an NFA, A_2 is a DFA.
 - Complementing A_2 is now easy.
 - The while-loop is executed $O(n_1 \ \cdot n_2$) times.
 - The for-loop is executed k times.
 - An execution of the for-loop takes constant time.
 - Overall: $O(k \cdot n_1 \cdot n_2)$ time.

• Checking equality: check inclusion in both directions.