
Operations and tests on	sets:	
Implementation	on	DFAs

Operations and tests

Universe	of objects 𝑈,	sets	of	objexts 𝑋, 𝑌,	object	𝑥.

Implementation	on	DFAs

• Assumption:	each object encoded by one word,	
and vice	versa.

• Membership:	trivial	algorithm,	linear	in	the
length of the word.

• Complement:	exchange final	and non-final	states.	
Linear	(or even constant)	time.

• Generic implementation of binary boolean
operations based on	pairing.

Pairing

Definition. Let 𝐴' = (𝑄', Σ, 𝛿', 𝑞.', 𝐹') and	𝐴1 =
(𝑄1, Σ, 𝛿1, 𝑞.1, 𝐹1) be	DFAs.	
The	pairing	 𝐴', 𝐴1 of	𝐴' and	𝐴1 is	the	tuple	(𝑄, Σ, 𝛿, 𝑞.)
where
• 𝑄 = {	 𝑞', 𝑞1 ∣ 𝑞' ∈ 𝑄', 𝑞1 ∈1}
• 𝛿 = 𝑞', 𝑞1 , 𝑎, 𝑞'8 , 𝑞18 𝑞', 𝑎, 𝑞'8 ∈ 𝛿', 𝑞1, 𝑎, 𝑞18 ∈ 𝛿1
• 𝑞. = 𝑞.', 𝑞.1
The	run of 𝐴', 𝐴1 on	a	word	of	Σ∗ is	defined	as	for	DFAs

Pairing

Pairing
• Another	example:		DFA	for the language of words

with an	even number of 𝑎s	and	even	number	of	𝑏s	
(and	even	number	of	𝑐s	…).

Generic algorihtm for binary boolean
operations

• We	assign to a	binary boolean operator⊙ an	operation	
on	languages	⊙= as	follows:

𝐿' ⊙=	𝐿1 = 	𝑤 ∈ Σ∗ 𝑤 ∈ 𝐿' ⊙ 𝑤 ∈ 𝐿1

• For example:

Generic algorihtm for binary boolean
operations

Generic algorihtm for binary boolean
operations

• Complexity:	the pairing of DFAs	with 𝑛' and	
𝑛1 states	has	𝑂 𝑛' ⋅ 𝑛1 states.

• Hence:	for DFAs	with 𝑛' and	𝑛1 states	over	an	
alphabet	with	𝑘 letters,	binary	operations	can	
be	computed	in	𝑂 𝑘 ⋅ 𝑛' ⋅ 𝑛1 time.

• Further:	there is a	family of languages for
which the computation of intersection takes
Θ(𝑘 ⋅ 𝑛' ⋅ 𝑛1) time.

Language	tests

• Emptiness:	a	DFA	is	empty	iff	
it	has	no	final	states

• Universality: a	DFA	is	universal	iff	
it	has	only	final	states

• Inclusion:	𝐿' ⊆ 𝐿1 iff	𝐿'		⃥	𝐿1 = Ø

• Equality:	𝐿' = 𝐿1 iff		(𝐿'		⃥	𝐿1) 	∪ (𝐿1		⃥	𝐿') = Ø

Inclusion test

Operations and tests on	sets:	
Implementation	on	NFAs

Membership

Membership

Complexity:	
• While loop executed 𝑤 times
• For loop executed at	most |𝑄| times
• Each execution of the loop body takes
𝑂 𝑄 time

• Overall:	𝑂(𝑄 1 ⋅ 𝑤) time

Complement

• Swapping	final	and	non-final	states	does	not	work
• Solution:	determinize	and	then swap	states
• Problem:	Exponential	blow-up	in	size!!

To	be	avoided	whenever	possible!!
• No	better	way: there	are	NFAs	with	𝑛 states	such	

that	the	smallest	NFA	for	their	
complement	has	Θ 2K states.

Union	and intersection

• The	pairing construction still	works for and intersection,	
with the same	complexity.

• It also	works for union,	but	only if the NFAs	are complete,	
i.e.,	they have at	least	one run for each word.

• Optimal	construction for intersection (same	example as
for DFAs).

• Non-optimal	construction for union.	There is another
construction which produces an	NFA	with 𝑄' + 𝑄1
states,	instead of 𝑄' ⋅ 𝑄1 :	just	put the automata side
by side!

Intersection

Intersection

Emptiness and Universality

• Like	DFAs,	an	NFA	is empty iff every state is
non-final.

• However,	contrary to DFAs,	it does not	hold	
that an	NFA	is universal	iff every state is final.	
Both directions fail!

• Emptiness is decidable in	linear	time.
• Universality is PSPACE-complete.

Crash	course on	PSPACE
• PSPACE:	Class	of decision problems for which there is an	
algorithm that
• always terminates and returns the correct answer,	and
• only uses polynomial memory in	the size of the input.	

• P ⊆ NP ⊆ PSPACE.	It is unknown if the inclusions are strict.
• NPSPACE:	Class	of decision problems for which there is a	
nondeterministic algorithm that
• does not	terminate or terminates and answers„no“	for no-
inputs,

• has at	least	one terminating execution answering „yes“	for
yes-inputs,	and

• only uses polynomial memory in	the size of the input.	
• Savitch´s theorem:	PSPACE=NPSPACE

• PSPACE-complete:	A	problem Π is PSPACE-complete if
• it belongs to PSPACE,	and
• every PSPACE-problem	can be reduced in	polynomial time	
to Π.

• PSPACE-complete problems:	
• Given a	deterministic Turing	machine𝑀 that only visits the
cell tapes occupied by the input,		and an	input 𝑥,	does𝑀
accept 𝑥 ?

• Is a	given quantified boolean formula true?

Crash	course on	PSPACE

Universality is PSPACE	complete

Universality is PSPACE	complete

Universality is PSPACE	complete

Universality is PSPACE	complete

Universality is PSPACE	complete

• Complement	and	check	for	emptiness
– Needs	exponential time	and space.

• Improvements:
– Check	for	emptiness	while	complementing

(on-the-fly	check).
– Subsumption	test.

Deciding universality of NFAs

Subsumption	test

• Let	𝐴 be	an	NFA	and	let	𝐵 = 𝑁𝐹𝐴𝑡𝑜𝐷𝐹𝐴(𝐴).	A	state	𝑄′
of	𝐵 is	minimal if	no	other	state	𝑄′′ satisfies	𝑄88 ⊂ 𝑄8.

• Proposition:	𝐴 is	universal	iff every	minimal	state	of	𝐵 is	
final.
Proof:	
𝐴 is	universal	
iff 𝐵 is	universal	
iff every	state	of	𝐵 is	final		
iff every state of 𝐵 contains a	final	state of 𝐴
iff every minimal	state of 𝐵 contains	a	final	state	of	𝐴
iff every minimal	state of 𝐵 is final

Subsumption	test

Subsumption	test

Subsumption	test

• But	is it correct ?
By removing a	non-minimal	state we may be
preventing the discovery of a	minimal	state in	
the future!

Proposition:	Let 𝐴 be	an	NFA	and	let	𝐵 = 𝑁𝐹𝐴𝑡𝑜𝐷𝐹𝐴(𝐴).	
After	termination	of	UnivNFA(A)	the	set	𝒬 contains	all	
minimal	states	of	𝐵.
Proof:		Assume	the	contrary.	Then	𝐵 has	a	shortest	path	
𝑄' → 𝑄1 → 	… 	→ 𝑄K such	that	
- 𝑄' ∈ 	𝒬 (after	termination),	and	
- 𝑄K ∉ 	𝒬 and		𝑄K is	minimal.

Since	the	path	is	shortest,		𝑄1∉ 𝒬 and	so	when	UnivNFA
processes	𝑄',		it	does	not	add	𝑄1.	This	can	only	be	
because	UnivNFA already	added	some	𝑄18 ⊂ 𝑄1 .
But	then	𝐵 has	a	path	𝑄18 → 	… 	→ 𝑄K8 with	𝑄K8 ⊆ 𝑄K .	
Since	𝑄K is	minimal,	𝑄K8 is	minimal	(actually	𝑄K8 = 𝑄K).
So	the	path	𝑄18 → 	… 	→ 𝑄K8 satisfies
-	𝑄18 ∈ 𝒬 (after	termination),	and	
- 𝑄K8 is	minimal.

contradicting	that 𝑄' → 𝑄1 → 	… 	→ 𝑄K is	shortest.

Subsumption	test

𝑄'

𝑄1

𝑄`

𝑄K

𝒬

𝑄18

𝑄`8

⊆

⊆

Inclusion

• Proposition:	The	inclusion problem is PSPACE-complete.
• Proof:	

Membership	in	PSPACE.	By Savitch´s theorem it suffices to
give a	nondeterministic algorithm for non-inclusion.	For this,	
guess letter by letter a	word,	storing the sets of states 𝑄'8 , 𝑄18
reached by both NFAs	on	the word guessed so	far.	Stop when
𝑄'8contains a	final	state,	but	𝑄18 does not.
PSPACE-hardness.	𝐴 is universal	iff 𝐿 𝐵 ⊆ 𝐿(𝐴),	where 𝐵 is
the one-state DFA	for Σ∗.

Deciding inclusion
• Algorithm:	use		𝐿' ⊆ 𝐿1 iff		𝐿' ∩	𝐿1 = Ø
• Concatenate	four	algorithms:

(1) determinize 𝐴1,
(2) complement	the	result,
(3) intersect	it	with	𝐴',	and
(4) check	for	emptiness.

• State	of	(3):	pair	(𝑞, 𝑄)	,	where	𝑞 ∈ 𝑄' and	𝑄 ⊆ 𝑄1
• Easy	optimizations:
– store	only	the	states	of	(3),	not	its	transitions;
– do	not	perform	(1),	then	(2),	then	(3);	instead,	construct	

directly	the	states	of	(3);
– check	(4)	while	constructing	(3).

Deciding inclusion
• Further	optimization:	subsumption test.

• Complexity:
– Let	𝐴', 𝐴1 be	NFAs	with	𝑛', 𝑛1 states	over	an	alphabet	
with	𝑘 letters.

– Without	the	subsumption test:
• The	while-loop	is	executed	at	most		𝑛' b 2Kc times.
• The	for-loop	is	executed	at	most	𝑂 𝑘 b 𝑛' times.
• An	execution	of	the	for-loop	takes	𝑂 𝑛11 time.
• Overall:	𝑂(𝑘 b 	𝑛'1 b 𝑛11 b 2Kc) time.

– With	the	subsumption case	the	worst-case	complexity	is	
higher.	Exercise:	give	an	upper	bound.

Deciding inclusion

• Important	special	case: 𝐴' is	an	NFA,	𝐴1 is	a	DFA.
– Complementing		𝐴1 is	now	easy.

– The	while-loop	is	executed	𝑂(𝑛' b 𝑛1) times.
– The	for-loop	is	executed	𝑘 times.
– An	execution	of	the	for-loop	takes	constant	time.

– Overall:	𝑂(𝑘	 b 𝑛' b 𝑛1) time.

• Checking	equality:	check	inclusion	in	both	
directions.

Deciding inclusion

