
Minimization	and	Reduction

Residuals

• The	residual	of a	language 𝐿 ⊆ Σ∗ with	respect		
to	a	word	𝑤 ∈ Σ∗ is	the	language	

𝐿' = {𝑢 ∈ Σ∗ ∣ 𝑤𝑢 ∈ 𝐿}
• A	language 𝐿- ⊆ Σ∗ is	a	residual	of	𝐿 if	𝐿- = 𝐿'
for	at	least	one	word	𝑤 ∈ Σ∗

• Observe:
– 𝐿. = 𝐿
– 𝐿' / = 𝐿'/

Relation	between	residuals	and	states

• Let	𝐴 be	a	(finite	or	infinite)	deterministic	
automaton.

• Def: The	language	of	a	state	𝑞 of	𝐴,	denoted	by	
𝐿2(𝑞) or	just	𝐿 𝑞 ,	is	the	language	recognized	by	
𝐴 with	𝑞 as	initial	state.

• Observation	1:	State-languages	are	residuals.
– For	every	state	𝑞 of	𝐴:		𝐿(𝑞) is	a	residual	of	𝐿(𝐴) .

• Observation	2:	Residuals	are	state-languages.
– For	every	residual	𝑅 of	𝐿(𝐴):	there	is	a	state	𝑞 such	
that	𝑅 = 𝐿(𝑞).

Relation	between	residuals	and	states

Relation	between	residuals	and	states

• Important consequence:

Regular	languages have finitely many residuals.

Languages with infinitely many residuals are not	
regular.

Canonical DA	for a	language

• Let	𝐿 ⊆ Σ∗ be a	language (not	necessarily regular).	
The	canonical	DA	for 𝐿 is the tuple

𝐶9 = (𝑄9, Σ, 𝛿9, 𝑞<9, 𝐹9)
where
–𝑄9 is the set of residuals of 𝐿,	i.e.,	𝑄9 = 	 {	𝐿' ∣ 𝑤 ∈ Σ∗}
– 𝛿 𝑅, 𝑎 = 𝑅? for every residual	𝑅 ∈ 𝑄9 and 𝑎 ∈ Σ
– 𝑞<9 = 𝐿
–𝐹9 = {𝑅 ∈ 𝑄9 ∣ 𝜖 ∈ 𝑅}

Canonical DA	for a	language
• For	the language 𝐸𝐸 ⊆ 𝑎, 𝑏 ∗:

𝑄DD =

𝑞<DD =

𝐹DD =

𝛿DD =

Canonical DA	for a	language
• For	the language 𝑎∗𝑏∗ ⊆ 𝑎, 𝑏 ∗:

𝑄?∗E∗ =

𝑞<(?∗E∗) =

𝐹?∗E∗ =

𝛿?∗E∗ =

Canonical DA	for a	language
• Proposition. 𝐶9 recognizes 𝐿.
• Proof.	We prove by induction on	 𝑤 :		𝑤 ∈ 𝐿 iff 𝑤 ∈ 𝐿(𝐶9)

Theorem.	If 𝐿 is regular,	then 𝐶9 is the unique minimal	DFA	up to
isomorphism recognizing 𝐿.

Proof.
1. 𝐶9 is	a	DFA	for	𝐿 with	a	minimal	number	of	states.

• 𝐶9 has	as	many	states	as residuals.
• Every	DFA	for	𝐿 has	at	least	as	many	states	as	residuals

2. Every	minimal	DFA	for	𝐿 is	isomorphic	to	𝐶9.
Let	𝐴 be	an	arbitrary	minimal	DFA	for	𝐿.	Then:

• The	states	of	𝐴 are	in	bijection	with	the	residuals	of	𝐿.
• The	transitions	of	𝐴 are	completely	determined	by	this	

bijection:	if	𝑞 ↔ 𝐿',	then	𝛿 𝑞, 𝑎 ↔ 𝐿'?
• The	initial	state	is	the	state	in	bijection	with	𝐿.
• The	final	states	are	those	in	bijection	with	residuals	

containing	𝜖.

Canonical DA	for a	language

Corollary. A	DFA	is minimal	iff 𝐿 𝑞 ≠ 𝐿 𝑞- for every two distinct
states 𝑞 and 𝑞′.

Proof.
(⇒): Let	𝐴 be	a	minimal	DFA.

Every	residual	of	𝐿(𝐴) is	recognized	by	at	least	one	state
of 𝐴 (holds	for	every	DFA).

Since	𝐴 is	minimal,	it	has	as	many	states	as	𝐶9,	and	so	its	
number	of	states	is	equal	to	the	number	of	residuals	of	𝐿(𝐴).

Therefore:	distinct	states	of	𝐴 recognize	distinct residuals of
𝐿(𝐴).

Canonical DA	for a	language

Corollary. A	DFA	is minimal	iff 𝐿 𝑞 ≠ 𝐿 𝑞- for every two distinct
states 𝑞 and 𝑞′.

Proof.
(⇐): Let	𝐴 be	a	DFA	such	that	distinct	states	recognize distinct

languages.

Since	every	state	of	𝐴 recognizes	a	residual	of	𝐿(𝐴),	and	
every	residual	of	𝐿(𝐴) is	recognized	by	some	state	of	𝐴
(holds	for	every	DFA),	the	number	of	states	of	𝐴 is	equal to
the	number	of	residuals	of	𝐿(𝐴).

So	𝐴 has	as	many	states	as	𝐶9,	and	so	it	is	minimal.

Canonical DA	for a	language

Is it minimal	?

Minimizing DFAs

Plan	for the next slides:

1. Computing	the language partition
2. Quotienting
3. Thm:	The	result is the minimal	DFA

Computing	the language
partition

• Block:	 set	of	states.

• Partition:	 set	of	blocks	such	that	each	state	belongs
to exactly one	block.

• Partition	𝑃 refines partition	𝑃- if	every	block	of	P	is	
contained	in	some	block	of	𝑃-.

• If	𝑃 refines	𝑃′,	then	we	say	that	𝑃 is	finer	than	𝑃′,	and	
𝑃′ is	coarser than	𝑃.

• Language	partition:	the	partition	in	which	two	states	
belong	to	the same	block	iff	they	recognize	the	same	
language.

State	partitions

• Start	with	the	partition	containing (one or)	two
blocks:

- Block	1:	Final	states (accept ε)

- Block	2:	Non-final	states	 (do	not	accept ε)

• Iteratively	split	blocks,	ensuring	that	states	
recognizing	the	same	language	always	stay	in	the	
same	block.

• Blocks	that	contain	at	least	two	states	recognizing	
different	languages	are	called	unstable.

Computing	the language partition

Finding	an	unstable block
If two	states	𝑞N,	𝑞O belong	to	the	same	block	𝐵
but 𝛿 𝑞N, 𝑎 and	𝛿 𝑞O, 𝑎 belong	to	different	blocks for some 𝑎 ∈ Σ,	
then 𝐵 is unstable.

Computing	the language partition

𝑞N 𝑞O
	

	

	

𝑎

	
	

𝑎

B

𝐵N 𝐵O

	
	

Splitting	an	unstable block
We say that (𝑎, 𝐵N) and 𝑎, 𝐵O are splitters of 𝐵.	
A	splitter (𝑎, 𝐵′) splits 𝐵 into two blocks:	states 𝑞 such	that
𝛿 𝑞, 𝑎 ∈ 𝐵′,	and the rest.

Computing	the language partition

𝑞N 𝑞O
	

	

	

𝑎

	
	

𝑎

B

𝐵N 𝐵O

	
	

𝑎

𝑎 	
𝑎

𝑎

Splitting	an	unstable block
We say that (𝑎, 𝐵N) and 𝑎, 𝐵O are splitters of 𝐵.	
A	splitter (𝑎, 𝐵′) splits 𝐵 into two blocks:	states 𝑞 such	that
𝛿 𝑞, 𝑎 ∈ 𝐵′,	and the rest.

Computing	the language partition

𝑞N 𝑞O
	

	

	

𝑎

	
	

𝑎

𝐵N-

𝐵N 𝐵O

	
	

𝑎

𝑎 	
𝑎

𝑎
𝐵O-

• The	algorithm	terminates.

Every	execution	of	the	loop	increases	the	number	
of	blocks	by	1,	and	the	number	of	blocks	is	
bounded	by	the	number	of	states.

• After	termination,	two	states	belong	to	the	same	
block	iff	they	recognize	the	same	language.
We show that after	termination:
(1) If	two	states	belong	to	different	blocks,	they	

recognize	different	languages.
(2) If	two	states	recognize	different	languages,	they	

belong	to	different	blocks.

Correctness

(1) If	two	states	𝑞Nand	𝑞O belong	to	different	blocks,	they	
recognize	different	languages.

By	induction	on	the	number	𝑘	of	splittings until 𝑞N and	𝑞O are split
(put into	different	blocks).
• 𝑘 = 0 .	 Then 𝑞N is	final	and	𝑞O non-final,	or	vice	versa,	and	we	
are	done.

• 𝑘 → 𝑘 + 1	.		Then	there	are 𝑞N- , 𝑞O- such	that		𝑞N
U
→𝑞N- ,		𝑞O

U
→𝑞O- ,	

and		𝑞N- 	, 𝑞O- have been split before 𝑞N, 𝑞O are split.	
By induction	hypothesis	𝑞N- 	and	𝑞O- recognize	different	languages.	
Since the	automaton	is	a	DFA,	𝑞N 	and	𝑞O also	recognize	different	
languages.

Correctness

(2) If	two	states	𝑞Nand	𝑞O recognize	different	languages,	
they	belong	to	different	blocks.

Let 𝑤 be	a	shortest	word	that	belongs	to,	say,	𝐿 𝑞N 	but	not	to	
𝐿 𝑞O .	By	induction	on	the	length	of	𝑤.
• |𝑤| = 0 .		Then 𝑤 = 𝜀 ,	𝑞N	is	final,	and	𝑞O is	non-final.	So	𝑞N	and	
𝑞O belong	to	different	blocks	from	the	start.

• 𝑤 > 0 .		Then 𝑤 = 𝑎𝑤- for	some	𝑎,	𝑤-.	Let	𝑞N- = δ 𝑞N, 𝑎 and
𝑞O- = δ(𝑞O, 𝑎) .	Then 𝐿(𝑞N-) ≠ 𝐿(𝑞O-) by	the	DFA	property.	
By induction	hypothesis 𝑞N- , 𝑞O- are	put	at	some	some	point	into	
different	blocks.	
If at	this	point	𝑞N	and	𝑞O still	belong	to	the	same	block,	then the
block becomes unstable	and	is	eventually	split.

Correctness

Quotienting

• Definition:	The	quotient of	a	NFA	𝐴 = (𝑄, Σ, 𝛿, 𝑞<, 𝐹) with	
respect	to	a	partition	𝑃 is	the	NFA	

𝐴/𝑃= 𝑄[, Σ, 𝛿[, 𝑞<[, 𝐹[
where
• 𝑄[= 𝑃
• (𝐵, 𝑎, 𝐵-) ∈ 𝛿[iff	(𝑞, 𝑎, 𝑞-) ∈ 𝛿 for	some	𝑞 ∈ 𝐵 and	
some 𝑞′ ∈ 𝐵′

• 𝑞<[is	the block containing	𝑞<
• 𝐹[is	the	set	of	blocks	that	contain	some	state	of	𝐹

Quotient	w.r.t.	a	partition

Quotient	w.r.t.	a	partition

Quotient	w.r.t.	a	partition

Proposition: The quotient of a DFA with respect to
its language partition is (isomorphic to) the
canonical DFA.

The proof has two parts:
(1) A DFA and its quotient w.r.t. the language

partition recognize the same language.
(2) The quotient is minimal (and therefore the

canonical DFA).

Quotient	w.r.t.	a	partition

(1) A DFA and its quotient w.r.t. the language
partition recognize the same language.

We prove a more general result (for later use):

Lemma: Let 𝐴 be a NFA, and let 𝑃	be any
partition that refines the language partition 𝑃\.
a) For every state 𝑞: 𝐿2 𝑞 = 𝐿]/^(𝐵), where
𝐵	is the block containing 𝑞.

b) If 𝐴 is a DFA and 𝑃 = 𝑃\, then 𝐴/𝑃 is also a
DFA.

Quotient	w.r.t.	a	partition

a) For	every	state		𝑞 of	𝐴:		𝐿2 𝑞 = 𝐿2/[(𝐵),	
where	𝐵 is	the	block	containing	𝑞.

We prove	that	for	every	word	𝑤 ∈ Σ:	
𝑤 ∈ 𝐿2 𝑞 ⟺	𝑤 ∈ 𝐿2/[(𝐵).

By induction	on	 𝑤 .
• 𝑤 = 0. Then	𝑤 = 𝜀 and
𝜖 ∈ 𝐿2 𝑞 iff			𝑞 ∈ 𝐹

iff 𝐵 ⊆ 𝐹	 (because 𝑃 refines 𝑃ℓ)
iff 𝐵 ∈ 𝐹[
iff 𝜖 ∈ 𝐿2/[(𝐵)

Quotient	w.r.t.	a	partition

a) For	every	state		𝑞 of	𝐴:		𝐿2 𝑞 = 𝐿2/[(𝐵),	
where	𝐵 is	the	block	containing	𝑞.

• |𝑤| 	> 	0.	 Then	𝑤	 = 𝑎𝑤′.	
There	is	𝑞

?
→𝑞- in	𝐴 such	that	𝑤- ∈ 	𝐿2 𝑞- .	

There	is	𝐵
?
→𝐵′ in	𝐴 𝑃⁄ such	that	𝑞- ∈ 𝐵-.

We have:

𝑎𝑤′ ∈ 𝐿2 𝑞 iff			𝑤′ ∈ 𝐿2 𝑞- (Def.	of 𝑞)	
iff 𝑤- ∈ 𝐿2 [⁄ (𝐵-) (induction hyp.)	
iff 𝑎𝑤′ ∈ 𝐿2/[(𝐵) (𝐵

?
→𝐵-)

Quotient	w.r.t.	a	partition

b) If	𝐴 is	a	DFA	and	𝑃 = 𝑃\,	then	𝐴/𝑃 is	also	a	DFA.

Quotient	w.r.t.	a	partition

We	show:	If		𝐵
?
→𝐵N	and	𝐵

?
→𝐵O,	then		𝐵N = 𝐵O.

• There	are	𝑞, 𝑞′ ∈ 𝐵,	𝑞N ∈ 𝐵N,	𝑞O ∈ 𝐵O
such	that	𝑞

?
→𝑞N	and 𝑞′

?
→𝑞O.

• Since	𝑃 ⊆ 𝑃\,	𝑞 and	𝑞- recognize	the	
same	language.

• Since	𝐴 is	a	DFA,	𝑞N and	𝑞O recognize	
the	same	language.	

• Since	𝑃 ⊆ 𝑃\,	𝐵N = 𝐵O.

2) The	quotient	of	a	DFA		𝐴 w.r.t.	the	language	
partition	is	the	canonical	DFA.

• By 1.b,	the	quotient	is	a	DFA.

• By 1.a,	applied to	the	initial	state,	𝐴/𝑃ℓ	
recognizes	the	same	language	as	𝐴.

• Since	the	quotient	is	w.r.t.	the	language	
partition,	different	blocks	of	the	quotient	
recognize	different	languages.	So	𝐴/𝑃	is	
minimal.

Quotient	w.r.t.	a	partition

Hopcroft´s algorithm

• The	algorithm for the computation of the
language partition is nondeterministic:	It does
not	specify which unstable block	to split next.	

• Hopcroft´s algorithm is a	refinement that
carefully chooses the split order,	using the inverse	
of the transition function and achieves a	
complexity of 𝑂(𝑚𝑛 log 𝑛) for a	DFA	with 𝑛
states over an	𝑚-letter	alphabet.	

• The	algorithm maintains a	workset of possible
splitters.	

Hopcroft´s algorithm
• The	algorithm maintains a	workset of candidate splitters
(𝑎, 𝐵).

• When a	candidate (𝑎, 𝐵) is taken from the workset,	it is
applied to all	current blocks.

• Observation	1:	After	applying (𝑎, 𝐵) to	all	blocks it never
brings anything to apply it again

⇒ it is safe to ensure that candidates removed from the
workset are never added to the workset again.

• Observation	2:	If 𝐵 is split into 𝐵< and 𝐵N,	then splitting w.r.t.	
any two of 𝑎, 𝐵 , 𝑎, 𝐵< , 𝑎, 𝐵N produces the same	result
as splitting with respect to all	three.

Hopcroft´s algorithm

Reducing NFAs

Minimal	NFAs	are not	unique

Finding minimal	NFAs	is hard

Theorem: The	following problem is PSPACE-
complete:		Given an	NFA	𝐴 and a	number 𝑘,	decide
if there is another NFA	𝐵 equivalent to 𝐴 and
having at	most 𝑘 states.

Proof	idea: We will	show later that the following
problem is PSPACE	complete:	given an	NFA	𝐴	over
alphabet Σ,	decide whether 𝐿 𝐴 = Σ∗.

The	problem above can be reduced to this one.	
This	shows PSPACE-hardness.	

Reducing NFAs

We	wish to use the same	idea as before:
• Compute	a	suitable	partition 𝑃	of the states of

the NFA.
• Quotient	the NFA	with respect to this partition.	

Requirements on	𝑃 :

• 𝐿 𝐴 = 𝐿(𝐴 𝑃⁄)

• Efficiently computable

• Recall:	For	every NFA	𝐴 and partition 𝑃	that	
refines the	language partition: 𝐿 𝐴 = 𝐿(𝐴 𝑃⁄).

• So	any such	partition	is good for reduction.
• A	partition	refines	the	language	partition	iff	
states	in	the	same	block	recognize	the	same	
language	(states	in	different	blocks	may	not	
recognize	different	languages,	though!).
• (Observe:	Such	partitions refine the	partition	
𝐹, 𝑄			⃥	𝐹 .)

Partitions suitable for reduction

• Idea:	use	the	same	algorithm	as	for	DFA,	but	
with	new	notions	of unstable block	and	block	
splitting.
• We	must	guarantee:	

after	termination,	states	of	a	block	
recognize	the	same	language

or, equivalently
after	termination,	states	recognizing	
different	languages	belong	to	different	
blocks

Computing	a	suitable partition

If	𝐿 𝑞N ≠ 𝐿 𝑞O then	either
- one	of	𝑞N, 𝑞O	is	final	and	the	other	
non-final,	or

- one	of 𝑞N, 𝑞O,	say	𝑞N,	has	a	transition	
𝑞N

?
→𝑞N- such	that	every 𝑎-transition	

𝑞O
?
→𝑞O- satisfies:	𝐿 𝑞N- ≠ 𝐿 𝑞O- .

The	key observation

A	block 𝐵 is unstable if there are states 𝑞N, 𝑞O ∈ 𝐵,	a	block	
𝐵′ and	𝑎 ∈ Σ such	that

𝛿 𝑞N, 𝑎 ∩ 𝐵- ≠ ∅ and			 𝛿 𝑞O, 𝑎 ∩ 𝐵- = ∅
We	say that 𝑎, 𝐵- splits 𝐵.

Unstable blocks

𝑎 𝑎

𝑎
𝑞N 𝑞O

𝑎
𝑎

B

𝐵′

𝑎

Splitting	an	unstable block
We say that (𝑎, 𝐵′) is a	splitter of 𝐵.	
A	splitter (𝑎, 𝐵′) splits 𝐵 into two blocks:	states 𝑞 such	that
𝛿 𝑞, 𝑎 ∩ 𝐵- ≠ ∅,	and the rest.

Splitting	blocks

𝑎

𝑎
𝑞N 𝑞O

𝑎
𝑎

B

𝐵′

𝑎

Splitting	an	unstable block
We say that (𝑎, 𝐵′) is a	splitter of 𝐵.	
A	splitter (𝑎, 𝐵′) splits 𝐵 into two blocks:	states 𝑞 such	that
𝛿 𝑞, 𝑎 ∩ 𝐵- ≠ ∅,	and the rest.

Splitting	blocks

𝑎

𝑎
𝑞N 𝑞O

𝑎
𝑎

𝐵′

𝑎

An	example

An	example

The	algorithm not	always computes
the language partition

States	2	and 3	recognize the same	language:		𝑐(𝑑 + 𝑒)
However,	the algorithm puts them into different	blocks.

