Classes and conversions

Regular expressions

e Syntax: r =0 |lelalrmrn|rn+r|r’

* Semantics: The language L(r) of a regular
expression 7 is inductively defined as follows:

L(®) =0,L(e) ={e}, L(a) ={a}

L(ryry) = L(r)L(ry)
Where L1L2 — {W1W2 | W1 (S Ll,Wz (S Lz}

L(ry + 1) = L(ry) U L(1)

L(r*) = Ujsg L
where L0 = {€} and L'*t! = [

Deterministic finite automata (DFA)

A deterministic finite automaton is a tuple
A=(0Q,% 0,90, F) where

* () is a finite, nonempty set of
states

e 2 is a nonempty, finite set of
letters, called an alphabet

0:0xX — (is the transition
function

* o € 0 is theinitial state
F < 0 is the set of final states

Run of a DFA on a word

q 5 q' denotes 6(q,a) = q'

The run of a DFA on a word
a,a, ...a, € X" is the unique sequence
qoq4 --- q, Of states such that

aq a, an
Qo 7491792 """ qdn-1 = qn
A DFA accepts a word iff its run on it
ends in a final state. We say the run is
accepting.

A DFA over an alphabet X recognizes a
language L € X" if it accepts every

word of L and no other. The language
recognized by a DFA A is denoted L(4).

Nondeterministic finite automata (NFA)

A nondeterministic automatonisatuple A = (Q, 2,0, Qy, F)
where

* (,%, F are as for DFAs
e §5:0%xX — 29 is the transition function
* (Jy € @ is the set of initial states

a,b a,b

Runs of an NFA on a word

* ArunofanNFAonaworda,a,..a, € X" isasequence
9091 --- 4, Of states such that g, € Q, and

aj a an
do 41— 42 " qn—1 — (n

e An NFA can have 0, 1, or more runs on the same word
(but only finitely many).

* An NFA accepts a word iff at least one of its runs on it is
accepting.

a,b a,b

Nondeterministic finite automata with
e-transitions (NFAe)
A nondeterministic automaton with e-transitions is a tuple
A=(0,% 0,0y F) where
* (,%,Qp, F are as for NFAs
* 5:0%x(2 U {e}) » 29 is the transition function

Runs of an NFAe on a word

 ArunofanNFAeonaworda a, ..a, € X" isa

sequence qg ... 4,94 ---G1q2 - Gn—1qy, *** Gy, Of states
such that g, € 0y and

€ € , a € € a, an € €

Qo= >G> ¢ 241242 " Gn-1 > qn > 2 qn
e An NFAe can have O, 1, or more runs on the same word,

even infinitely many.

* An NFAe€ accepts a word iff at least one of its runs on it is
accepting.

Nondeterministic finite automata with
regular expressions (NFAreg)

A nondeterministic automaton with regular expressions is a
tuple A = (Q, %, 0, Qy, F) where

* (,%,Qp, F are as for NFAs

e §5:0%(Z UReg(2)) = 29 is the transition function, where
d(q,r) = @ for all but finitely many pairs (q,7) € O (2 U

Reg(2))

@@@@

Language recognized by an NFAreg

An NFAreg accepts a word w if there are states g, ..., g,
and regular expressions 1y, ..., 15, such that

_qOEQOI CI‘I’LEF/

1 T2 ™
—qo—q1—>q2 " qn—1— (qyn ,and

—w € L(ryry -+ 13).

a*b”
SO
C

Normal form

* An automaton of any class is in normal form if every state
is reachable by a path of transitions from some initial
state.

* For every automaton there is an equivalent automaton in
normal form.

e All algorithms in this course assume that automata inputs
are in normal form, and guarantee that the output is also
in normal form.

Conversions

NFA to DFA

a,b a,b

The powerset construction

NFAtoDFA(A)
Input: NFA A = (0, %,0, Qp, F)
Output: DFA B = (Q,X, A, g9, J) with L(B) = L(A)

1 QAT « 0;q90 «— Qo
2 W ={0Qo}
3 while W # (0 do
4 pick Q' from W
5 add O’ to Q
6 if O'NF #(0thenadd Q' toF
7 foralla € X do
8 Q" « U 0(q,a)
qeQ’
9 if Q" ¢ Q then add Q" to'W

10 add (Q',a,0”) to A

a,b

a,b

b

a,b a a,b

NFAe to NFA

NFAe to NFA

Saturation

~CO ~C0O
W w N

w | | =
-O

W

0,1,2

NFAe to NFA

Saturation

|
M N M) - e thckofthe
@ : . ’ @ initial state
+ e-removal

A one-pass algorithm

NFAetoNFA(A)
Input: NFA-c A = (Q,%,9, Qo, F)
Output: NFA B = (Q',X,¢’, Q). F’) with L(B) = L(A)

I 0y« Qo

2 Q' «— 000 «0,F « Fn Qg

3 0" «0;We{(q.a,q)€d|qe Qo)

4 while W # 0 do

5 pick (¢, a, ¢>) from W

6 if @ # £ then

7 add ¢, to Q’; add (g, @, ¢») to ¢’; if g € F then add g, to F’
8 for all g3 € 6(¢2,) do

9 if (1, @,q3) ¢ ¢’ then add (¢, @, g3) to W
10 foralla € X, g3 € 6(q2,a) do
11 if (¢2,a,q3) ¢ ¢ then add (¢>,a,q3) to W
12 else /xa=gx%/

13 add (q;,@,q>) to 0”; if g» € F then add ¢, to F’
14 for all B € X U {&}, g3 € 6(¢2,PB) do

15 if(ql,ﬁ,Q3) ¢ 0’ Uo” then add (C]l,,B,q3) toW

Correctness

Proposition. Let A be an NFA€ and let B = NFAetoNFA(A).
Then Bisan NFAand L(A) = L(B).

Proof.
* Termination. Every transition that leaves W is never added to
W again, and each iteration of the while loop removes one
transition from WW.
e Bisan NFA. Easy.
« L(B) S L(A).
— Check that every transition added by the algorithm is a
shortcut.
— Check that an initial state g, is made into a final state only if 4
has an e-path from g, to a final state.
Invariant: At line 13, g1 € Q. Proof by induction, observing that
the algorithm only adds e-transitions to W at line 15.

Correctness

. L(A) € L(B)
If e € L(A) thene € L(B)

€ € € €
o 2 d1 (42—~ (43—~ (4

Ifw # eandw € L(A) thenw € L(B)

€ € a4 € € a- €
o 41 42 43 2 (44 2 (s = (5 = (¢

Regular expressions to NFAe

@b +cyd whp) @b +erd O

Regular expressions to NFAe

Preprocessing: Convert the regular expression into
another one which is either equal to @, or does not

contain any occurrence of Q.

Use the following rewrite rules:

O-r ~ 0 r-0 ~
r+0 ~ r OD+r ~ r
0" ~ ¢

Regular expressions to NFAe

(a*b* +c)'d >©
e e oo

Automaton for the regular expression a, where a € £ U {&}

rnr r "
(F——=) ~ (})——)—)

Rule for concatenation

rn
n+n
——{) D
r

Rule for choice

VD) e OB

Rule for Kleene iteration

Regular expressions to NFAe

@b +eyd >©
O 0

Automaton for the regular expression a, where a € £ U {&}

olie

((l*[f’c +C)* =: : d :: :: (: nr C : ~ : : r C j r C :

Rule for concatenation

rn
n+n
——{) D
r

Rule for choice

VD) e OB

Rule for Kleene iteration

Regular expressions to NFAe

(@b + oyd >©
O 0

Automaton for the regular expression a, where a € £ U {&}

(a*b* +C)* =: : d :: :: (: nr C : ~ (: r C j r C :

Rule for concatenation

rn
rn+n
——{) D
r

Rule for choice

VD) e OB

@
@
O

Rule for Kleene iteration

Regular expressions to NFAe

(a*b* +c)'d }@
e e oo

Automaton for the regular expression a, where a € £ U {&}

@ (a*b* +C)* =: : d :: :: (: nr C : ~ : ’: r C) r C :

Rule for concatenation

rn
rn+n
——{) D
r

Rule for choice

VD) e OB

Rule for Kleene iteration

Regular expressions to NFAe

(a*b* +c)'d =©
e e oo

Automaton for the regular expression a, where a € £ U {&}

@ (a*b* +C)* =: : d :: :: < : nr C : ~ : : r C : r C :

Rule for concatenation

rn
rn+n
——{) D
r

Rule for choice

VD) e OB

Rule for Kleene iteration

Regular expressions to NFAe

(a*b* +c)'d >@

(a*b* + ¢)*

o e

Automaton for the regular expression a, where a € £ U {&}

rnr r "
(F——=) ~ (})——)—)

Rule for concatenation

rn
rn+n
——{) D
r

Rule for choice

VD) e OB

Rule for Kleene iteration

NFA€ to regular expressions

* Preprocessing: convert into an NFA-¢ with
— one initial state without input transitions, and
— one final state without output transitions.

NFA€ to regular expressions

* Processing: apply the following two rules,
given priority to the first one.

7~ O

ris*sy

1* al
F18 Sm

*
rIIS Slﬂ

NFA€ to regular expressions

NFA€ to regular expressions

NFA€ to regular expressions

NFA€ to regular expressions

NFA€ to regular expressions

NFA€ to regular expressions

a+ bb
(a

(aa+ +
b + ba)(aa + bb)*(ba + ab))*

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

@ aa + bb +

. (ab + ba)(aa + bb)*(ba + ab)

A Tour of Conversions

O

(aa+bb +
(ab + ba)(aa + bb)*(ba + ab))*

A Tour of Conversions

aa + bb + (ab + ba)(aa + bb)*(ab + ba)

‘ - ‘ - @

A Tour of Conversions

(ab + ba)(aa + bb)*(ab + ba)

‘ - ‘ - O

bb

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

