Classes and conversions

Regular expressions

- Syntax: $r::=\varnothing|\epsilon| a\left|r_{1} r_{2}\right| r_{1}+r_{2} \mid r^{*}$
- Semantics: The language $L(r)$ of a regular expression r is inductively defined as follows:
- $L(\varnothing)=\varnothing, L(\epsilon)=\{\epsilon\}, L(a)=\{a\}$
- $L\left(r_{1} r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$

$$
\text { where } L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\}
$$

- $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$
- $L\left(r^{*}\right)=\bigcup_{i \geq 0} L^{i}$
where $L^{0}=\{\epsilon\}$ and $L^{i+1}=L^{i} L$

Deterministic finite automata (DFA)

A deterministic finite automaton is a tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite, nonempty set of states
- Σ is a nonempty, finite set of letters, called an alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the initial state

- $F \subseteq Q$ is the set of final states

Run of a DFA on a word

- $q \xrightarrow{a} q^{\prime}$ denotes $\delta(q, a)=q^{\prime}$
- The run of a DFA on a word
$a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}$ is the unique sequence $q_{0} q_{1} \ldots q_{n}$ of states such that

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \cdots q_{n-1} \xrightarrow{a_{n}} q_{n}
$$

- A DFA accepts a word iff its run on it ends in a final state. We say the run is accepting.
- A DFA over an alphabet Σ recognizes a language $L \subseteq \Sigma^{*}$ if it accepts every word of L and no other. The language
 recognized by a DFA A is denoted $L(A)$.

Nondeterministic finite automata (NFA)

A nondeterministic automaton is a tuple $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ where

- Q, Σ, F are as for DFAs
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function
- $Q_{0} \subseteq Q$ is the set of initial states

Runs of an NFA on a word

- A run of an NFA on a word $a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}$ is a sequence $q_{0} q_{1} \ldots q_{n}$ of states such that $q_{0} \in Q_{0}$ and

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \cdots q_{n-1} \xrightarrow{a_{n}} q_{n}
$$

- An NFA can have 0,1 , or more runs on the same word (but only finitely many).
- An NFA accepts a word iff at least one of its runs on it is accepting.

Nondeterministic finite automata with

 ϵ-transitions (NFA ϵ)A nondeterministic automaton with ϵ-transitions is a tuple $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ where

- Q, Σ, Q_{0}, F are as for NFAs
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{Q}$ is the transition function

Runs of an NFA ϵ on a word

- A run of an NFAE on a word $a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}$ is a sequence $q_{0} \cdots q_{0}^{\prime} q_{1} \cdots q_{1}^{\prime} q_{2} \cdots q_{n-1}^{\prime} q_{n} \cdots q_{n}^{\prime}$ of states such that $q_{0} \in Q_{0}$ and

$$
q_{0} \xrightarrow{\epsilon} \cdots \xrightarrow{\epsilon} q_{0}^{\prime} \xrightarrow{a_{1}} q_{1} \xrightarrow{\epsilon} \cdots \xrightarrow{\epsilon} q_{1}^{\prime} \xrightarrow{a_{2}} q_{2} \cdots q_{n-1}^{\prime} \xrightarrow{a_{n}} q_{n} \xrightarrow{\epsilon} \cdots \xrightarrow{\epsilon} q_{n}^{\prime}
$$

- An NFA ϵ can have 0, 1, or more runs on the same word, even infinitely many.
- An NFA ϵ accepts a word iff at least one of its runs on it is accepting.

Nondeterministic finite automata with regular expressions (NFAreg)

A nondeterministic automaton with regular expressions is a tuple $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ where

- Q, Σ, Q_{0}, F are as for NFAs
- $\delta: Q \times(\Sigma \cup \operatorname{Reg}(\Sigma)) \rightarrow 2^{Q}$ is the transition function, where $\delta(q, r)=\varnothing$ for all but finitely many pairs $(q, r) \in Q \times(\Sigma \cup$ $\operatorname{Reg}(\Sigma))$

Language recognized by an NFAreg

An NFAreg accepts a word w if there are states q_{0}, \ldots, q_{n} and regular expressions r_{1}, \ldots, r_{n} such that

$$
\begin{aligned}
& -q_{0} \in Q_{0}, q_{n} \in F, \\
& -q_{0} \xrightarrow{r_{1}} q_{1} \xrightarrow{r_{2}} q_{2} \cdots q_{n-1} \xrightarrow{r_{n}} q_{n}, \text { and } \\
& -w \in L\left(r_{1} r_{2} \cdots r_{n}\right) .
\end{aligned}
$$

Normal form

- An automaton of any class is in normal form if every state is reachable by a path of transitions from some initial state.
- For every automaton there is an equivalent automaton in normal form.
- All algorithms in this course assume that automata inputs are in normal form, and guarantee that the output is also in normal form.

Conversions

NFA to DFA

The powerset construction

NFAtoDFA(A)
Input: NFA $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$
Output: DFA $B=\left(Q, \Sigma, \Delta, q_{0}, \mathcal{F}\right)$ with $L(B)=L(A)$
$1 \quad \mathcal{Q}, \Delta, \mathcal{F} \leftarrow \emptyset ; q_{0} \leftarrow Q_{0}$
$2 \mathcal{W}=\left\{Q_{0}\right\}$
3 while $\mathcal{W} \neq \emptyset$ do
4 pick Q^{\prime} from \mathcal{W}
5 add Q^{\prime} to Q
6 if $Q^{\prime} \cap F \neq \emptyset$ then add Q^{\prime} to \mathcal{F}
$7 \quad$ for all $a \in \Sigma$ do

$$
Q^{\prime \prime} \leftarrow \bigcup_{q \in Q^{\prime}} \delta(q, a)
$$

if $Q^{\prime \prime} \notin Q$ then add $Q^{\prime \prime}$ to \mathcal{W}
add $\left(Q^{\prime}, a, Q^{\prime \prime}\right)$ to Δ

NFA ϵ to NFA

NFA ϵ to NFA

Saturation

NFA ϵ to NFA

Saturation

Check of the initial state $+\epsilon$-removal

A one-pass algorithm

NFAstoNFA(A)
Input: NFA- $\varepsilon A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$
Output: NFA $B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$ with $L(B)=L(A)$

```
Q
    Q
    \delta'\prime}\leftarrow\emptyset;W\leftarrow{(q,\alpha,\mp@subsup{q}{}{\prime})\in\delta|q\in\mp@subsup{Q}{0}{}
    while W\not=\emptyset do
        pick ( }\mp@subsup{q}{1}{},\alpha,\mp@subsup{q}{2}{})\mathrm{ from W
    if }\alpha\not=\varepsilon\mathrm{ then
        add q}\mp@subsup{q}{2}{}\mathrm{ to }\mp@subsup{Q}{}{\prime};\mathrm{ add ( }\mp@subsup{q}{1}{},\alpha,\mp@subsup{q}{2}{})\mathrm{ to }\mp@subsup{\delta}{}{\prime};\mathrm{ if }\mp@subsup{q}{2}{}\inF\mathrm{ then add }\mp@subsup{q}{2}{}\mathrm{ to }\mp@subsup{F}{}{\prime
        for all }\mp@subsup{q}{3}{}\in\delta(\mp@subsup{q}{2}{},\varepsilon) d
        if (q},\alpha,\alpha,\mp@subsup{q}{3}{})\not\in\mp@subsup{\delta}{}{\prime}\mathrm{ then add ( }\mp@subsup{q}{1}{},\alpha,\mp@subsup{q}{3}{})\mathrm{ to W
        for all }a\in\Sigma,\mp@subsup{q}{3}{}\in\delta(\mp@subsup{q}{2}{},a)\mathrm{ do
            if (q2,a,\mp@subsup{q}{3}{})\not\in\mp@subsup{\delta}{}{\prime}}\mathrm{ then add ( }\mp@subsup{q}{2}{},a,\mp@subsup{q}{3}{})\mathrm{ to W
        else / *\alpha=\varepsilon*/
        add ( }\mp@subsup{q}{1}{},\alpha,\mp@subsup{q}{2}{})\mathrm{ to }\mp@subsup{\delta}{}{\prime\prime};\mathrm{ if }\mp@subsup{q}{2}{}\inF\mathrm{ then add }\mp@subsup{q}{1}{}\mathrm{ to }\mp@subsup{F}{}{\prime
        for all }\beta\in\Sigma\cup{\varepsilon},\mp@subsup{q}{3}{}\in\delta(\mp@subsup{q}{2}{},\beta)\mathrm{ do
        if (q},\beta,\mp@subsup{q}{3}{})\not\in\mp@subsup{\delta}{}{\prime}\cup\mp@subsup{\delta}{}{\prime\prime}\mathrm{ then add ( }\mp@subsup{q}{1}{},\beta,\mp@subsup{q}{3}{})\mathrm{ to W
```


Correctness

Proposition. Let A be an NFA ϵ and let $B=\operatorname{NFA} \in \operatorname{toNFA}(A)$. Then B is an NFA and $L(A)=L(B)$.
Proof.

- Termination. Every transition that leaves W is never added to W again, and each iteration of the while loop removes one transition from W.
- $\quad B$ is an NFA. Easy.
- $\quad L(B) \subseteq L(A)$.
- Check that every transition added by the algorithm is a shortcut.
- Check that an initial state q_{0} is made into a final state only if A has an ϵ-path from q_{0} to a final state. Invariant: At line $13, q_{1} \in Q_{0}$. Proof by induction, observing that the algorithm only adds ϵ-transitions to W at line 15 .

Correctness

- $L(A) \subseteq L(B)$

If $\epsilon \in L(A)$ then $\epsilon \in L(B)$

$$
q_{0} \xrightarrow{\epsilon} q_{1} \xrightarrow{\epsilon} q_{2} \xrightarrow{\epsilon} q_{3} \xrightarrow{\epsilon} q_{4}
$$

If $w \neq \epsilon$ and $w \in L(A)$ then $w \in L(B)$

$$
q_{0} \xrightarrow{\epsilon} q_{1} \xrightarrow{\epsilon} q_{2} \xrightarrow{a_{1}} q_{3} \xrightarrow{\epsilon} q_{4} \xrightarrow{\epsilon} q_{5} \xrightarrow{a_{2}} q_{5} \stackrel{\epsilon}{\rightarrow} q_{6}
$$

Regular expressions to NFA ϵ

Regular expressions to NFA ϵ

- Preprocessing: Convert the regular expression into another one which is either equal to \emptyset, or does not contain any occurrence of \emptyset.
- Use the following rewrite rules:

$$
\begin{aligned}
\emptyset \cdot r & \leadsto \emptyset & r \cdot \emptyset & \leadsto \emptyset \\
r+\emptyset & \leadsto r & \emptyset+r & \leadsto r \\
\emptyset^{*} & \leadsto \varepsilon & &
\end{aligned}
$$

Regular expressions to NFA ϵ

$\left(a^{*} b^{*}+c\right)^{*} d$

Regular expressions to NFA ϵ

Regular expressions to NFA ϵ

\leadsto

Rule for concatenation

\leadsto

Rule for choice

Rule for Kleene iteration

Regular expressions to NFA ϵ

Regular expressions to NFA ϵ

Automaton for the regular expression a, where $a \in \Sigma \cup\{\varepsilon\}$

Rule for concatenation

\leadsto

Rule for choice

Rule for Kleene iteration

Regular expressions to NFA ϵ

NFA ϵ to regular expressions

- Preprocessing: convert into an NFA- ϵ with
- one initial state without input transitions, and
- one final state without output transitions.

NFA ϵ to regular expressions

- Processing: apply the following two rules, given priority to the first one.

NFA ϵ to regular expressions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

