
Classes and conversions

Regular	expressions
• Syntax:		𝑟 ∷= ∅ ∣ 𝜖 ∣ 𝑎 ∣ 𝑟(𝑟) ∣ 𝑟(+ 𝑟) ∣ 𝑟∗

• Semantics:	The	language 𝐿 𝑟 of	a	regular	
expression	𝑟 is	inductively	defined	as	follows:
• 𝐿 ∅ = ∅,	𝐿 𝜖 = {𝜖},	𝐿 𝑎 = 𝑎

• 𝐿 𝑟(𝑟) = 𝐿 𝑟(𝐿 𝑟)
where 𝐿(𝐿) = {𝑤(𝑤) ∣ 𝑤(∈ 𝐿(, 𝑤) ∈ 𝐿)}

• 𝐿 𝑟(+ 𝑟) = 𝐿 𝑟(∪ 𝐿 𝑟)

• 𝐿 𝑟∗ = ⋃ 𝐿9�
9;< 		

where	𝐿< = 𝜖 and	𝐿9=(= 𝐿9𝐿

Deterministic finite	automata (DFA)

• 𝑄 is	a	finite,	nonempty	set	of	
states

• Σ is	a	nonempty,	finite	set	of	
letters,	called	an	alphabet

• 𝛿: 𝑄×Σ → 𝑄 is	the	transition	
function

• 𝑞< ∈ 𝑄 is	the	initial	state
• 𝐹 ⊆ 𝑄 is	the	set	of	final	states

A	deterministic finite	automaton is a	tuple
𝐴 = (𝑄, Σ, 𝛿, 𝑞<, 𝐹) where

Run	of a	DFA	on	a	word
• 𝑞

J
→𝑞K denotes 𝛿 𝑞, 𝑎 = 𝑞K

• The	run of a	DFA	on	a	word
𝑎(𝑎) …𝑎M ∈ Σ∗ is	the	unique	sequence	
𝑞<𝑞(…𝑞M of	states	such	that

𝑞<
JN 𝑞(

JO 𝑞) ⋯𝑞MQ(
JR 	𝑞M

• A	DFA	accepts a	word iff its	run	on	it	
ends	in	a	final	state.	We	say	the	run	is	
accepting.

• A	DFA	over an	alphabet Σ recognizes	a	
language	𝐿 ⊆ Σ∗ if	it	accepts	every	
word	of	𝐿 and	no	other.	The	language	
recognized	by	a	DFA	𝐴 is	denoted	𝐿 𝐴 .

Nondeterministic finite	automata (NFA)

A	nondeterministic automaton is a	tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑄<, 𝐹)
where
• 𝑄, Σ, 𝐹 are	as	for	DFAs
• 𝛿: 𝑄×Σ → 2Z is	the	transition	function
• 𝑄< ⊆ 𝑄 is	the	set	of	initial	states

Runs	of an	NFA	on	a	word
• A	run of an	NFA	on	a	word 𝑎(𝑎) …𝑎M ∈ Σ∗ is	a	sequence	
𝑞<𝑞(…𝑞M of	states	such	that	𝑞< ∈ 𝑄< and

𝑞<
JN 𝑞(

JO 𝑞) ⋯𝑞MQ(
JR 	𝑞M

• An	NFA	can have 0,	1,	or more runs on	the same	word
(but	only finitely many).

• An		NFA	accepts a	word iff at	least	one	of	its	runs	on	it	is	
accepting.	

Nondeterministic	finite	automata with
𝜖-transitions (NFA𝜖)

A	nondeterministic automaton with 𝜖-transitions is a	tuple
𝐴 = (𝑄, Σ, 𝛿, 𝑄<, 𝐹) where
• 𝑄, Σ, 𝑄<, 𝐹 are	as	for	NFAs
• 𝛿: 𝑄×(Σ ∪ {𝜖}) → 2Z is	the	transition	function

Runs	of an	NFA𝜖 on	a	word
• A	run of an	NFA𝜖 on	a	word 𝑎(𝑎) …𝑎M ∈ Σ∗ is	a	
sequence	𝑞< …𝑞<K 𝑞(…𝑞(K𝑞) …𝑞MQ(K 𝑞M ⋯𝑞MK of	states	
such	that	𝑞< ∈ 𝑄< and

𝑞<
[
→⋯

[
→𝑞<K

JN 𝑞(
[
→⋯

[
→𝑞(K

JO 𝑞) ⋯𝑞MQ(K JR 𝑞M
[
→⋯

[
→𝑞MK

• An	NFA𝜖 can have 0,	1,	or more runs on	the same	word,	
even infinitely many.	

• An	NFA𝜖 accepts a	word iff at	least	one	of	its	runs	on	it	is	
accepting.	

Nondeterministic	finite	automata with
regular expressions (NFAreg)

A	nondeterministic automaton with regular expressions is a	
tuple 𝐴 = (𝑄, Σ, 𝛿, 𝑄<, 𝐹) where
• 𝑄, Σ, 𝑄<, 𝐹 are	as	for	NFAs
• 𝛿: 𝑄×(Σ ∪ Reg(Σ)) → 2Z is	the	transition	function,	where	
𝛿 𝑞, 𝑟 = ∅ for	all	but	finitely	many	pairs	 𝑞, 𝑟 ∈ 𝑄×(Σ ∪
Reg(Σ))

Language	recognized by an	NFAreg
An	NFAreg accepts a	word 𝑤 if there are states 𝑞<, … , 𝑞M
and	regular	expressions	𝑟(, … , 𝑟M such	that	

– 𝑞< ∈ 𝑄< ,		𝑞M ∈ 𝐹,		

– 𝑞<
N̂→𝑞(

Ô→𝑞) ⋯𝑞MQ(
R̂→	𝑞M ,	and	

– 𝑤 ∈ 𝐿 𝑟(𝑟) ⋯𝑟M .

Normal	form

• An	automaton of any class is in	normal	form	if every state
is reachable by a	path of transitions from some initial	
state.	

• For every automaton there is an	equivalent automaton in	
normal	form.

• All	algorithms in	this course assume that automata inputs
are in	normal	form,	and guarantee that the output is also	
in	normal	form.	

Conversions

NFA	to DFA

The	powerset construction

NFA𝜖 to NFA

NFA𝜖 to NFA

Saturation

NFA𝜖 to NFA

Saturation

Check	of the
initial	state
+	𝜖-removal

A	one-pass	algorithm

Correctness

Proposition.		Let 𝐴 be	an	NFA𝜖 and		let	𝐵 = NFAϵtoNFA(𝐴).	
Then	𝐵	is	an	NFA	and	𝐿 𝐴 = 𝐿 𝐵 .
Proof.
• Termination.	Every	transition that leaves𝑊 is	never	added	to	

𝑊again,	and	each	iteration	of	the	while	loop	removes	one	
transition	from	𝑊.

• 𝐵 is	an	NFA.	Easy.
• 𝐿 𝐵 ⊆ 𝐿(𝐴).	

− Check	that	every	transition	added	by	the	algorithm	is	a	
shortcut.

− Check	that an	initial	state 𝑞< is made into a	final	state only if 𝐴
has	an	𝜖-path	from	𝑞< to	a	final	state.
Invariant:	At	line 13,	𝑞(∈ 𝑄<.	Proof	by	induction,	observing	that	
the	algorithm	only	adds		𝜖-transitions	to	𝑊 at	line	15.

Correctness

• 𝐿 𝐴 ⊆ 𝐿(𝐵)

If	𝜖 ∈ 𝐿 𝐴 then	𝜖 ∈ 𝐿 𝐵

𝑞<
[
→𝑞(

[
→𝑞)

[
→𝑞f

[
→𝑞g

If	𝑤 ≠ 	𝜖 and	𝑤 ∈ 𝐿 𝐴 then	𝑤 ∈ 𝐿 𝐵

𝑞<
[
→𝑞(

[
→𝑞)

JN 𝑞f
[
→𝑞g

[
→𝑞i

JO 𝑞i
[
→𝑞j

Regular	expressions to NFA𝜖

Regular	expressions to NFA𝜖

• Preprocessing:	Convert the regular expression into
another one which is either equal to ∅,	or does not	
contain any occurrence of ∅.

• Use the following rewrite rules:

Regular	expressions to NFA𝜖

Regular	expressions to NFA𝜖

Regular	expressions to NFA𝜖

Regular	expressions to NFA𝜖

Regular	expressions to NFA𝜖

Regular	expressions to NFA𝜖

NFA𝜖 to regular expressions
• Preprocessing:	convert	into	an	NFA-𝜖	with	
– one	initial	state	without	input	transitions,	and
– one	final	state	without	output	transitions.

NFA𝜖 to regular expressions
• Processing:	apply the following two rules,	
given priority to the first one.

NFA𝜖 to regular expressions

NFA𝜖 to regular expressions

NFA𝜖 to regular expressions

NFA𝜖 to regular expressions

NFA𝜖 to regular expressions

NFA𝜖 to regular expressions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

A	Tour	of Conversions

