
Technische Universität München Winter term 2019/20
I7
Prof. J. Křet́ınský / M. Lazić / S. Sickert-Zehnter / C. Weil-Kennedy 21.11.2019

Automata and Formal Languages — Programming Assignement Part 1

Due on 12.12.2019

Your task is to write a program in Java that searches for the shortest occurrence of a given pattern in a text,
possibly with errors. This amounts to implementing the algorithms from the lecture notes and exercises and
extending them.

Task

The final aim is to design an algorithm, with the following input and output:

Input: text t P Σ`, pattern p in the form of a regular expression, edit-distance i ě 0
Output: the first shortest occurrence of a word w in t such that w P ∆Lppq,i, or K if no such occurrence exists.

Recall that ∆Lppq,i is the language of all words with Levenstein-distance (or edit-distance) of at most i to some
word in Lppq. See Exercise Sheet 6 for the formal definition. You can also find there a construction of an
automaton accepting ∆Lppq,i, starting from an automaton accepting Lppq. Note that this construction gives you
an NFA-ε.

In order to achieve the whole task, here are four subtasks.

1. Implement the algorithm PatternMatchingNFA of the lecture notes, that is an algorithm with

Input: pattern p in the form of a regular expression, text t P Σ`

Output: the last position of the first occurrence of a word w P Lppq in t, or K if no such occurrence exists

2. Modify this algorithm so that, for a text t, pattern p and distance i ě 0, the algorithm returns the first
occurrence with edit-distance at most i of pattern p.

Input: pattern p, text t P Σ`, distance i
Output: the last position of the first occurrence of a word w P ∆Lppq,i in t, or K if no such occurrence
exists

3. Using the algorithm from the first subtask, implement an algorithm which searches for all the shortest
occurrences of pattern p in text t, and returns the first one.

Input: pattern p, text t P Σ`

Output: the positions of the first and last letters of the first shortest occurence of a word w P Lppq in t,
or K if no such occurrence exists

4. Give an algorithm that searches for all the shortest occurrences with edit-distance at most i of pattern p
in text t, and returns the first one.

Input: pattern p, text t P Σ`, distance i
Output: the positions of the first and last letters of the first shortest occurence of a word w P ∆Lppq,i in
t, or K if no such occurrence exists

All four subtasks will be checked.



Example

Let Σ “ ta, b, cu and let p be the pattern given by the regular expression abpcq˚ba. Given a text t, we number
the letters from the left starting with 1, e.g. t “ a1a2 . . . an.

• Consider text t1 “ abccba. The first occurence of p in t1 is abccba, and the last position of this first
occurence is 6. There is no shorter occurrence, so this is at the same time the first shortest occurence of
p in t1. The first occurence of ∆Lppq,1 is abccb, with last position 5 and there is no shorter occurrence.

• Consider text t2 “ aacbcabccbaccbcabcabcc. The first occurence of p in t2 is abccba, and the last position
of this first occurence is 11. There is no shorter occurrence. The first occurence of ∆Lppq,1 is abccb, with
last position 10. The first shortest occurence of ∆Lppq,1 is the word abca in position 16´ 19. Notice that
the first occurence is 6´ 10 but it is not the shortest.

• Consider text t3 “ cccccccccccc. There is no occurence of words of Lppq or ∆Lppq,1 in t3 so all the subtasks
should answer K for distance i “ 1.

The expected outputs for these examples can be summarized in the following Table:

t1 “ abccba t2 “ aacbcabccbaccbcabcabcc t3 “ cccccccccccc

Task 1 6 11 K

Task 2, i “ 1 5 10 K

Task 3 1-6 6-11 K

Task 4, i “ 1 1-5 16-19 K

Table 1: Table of outputs of the subtasks for the examples from above.

If the pattern contains the empty-word ε, then the answer for any text t P Σ` is 0 for subtask 1 and 2 and 0´0
for subtasks 3 and 4.

What to hand in

Download the zip file afl-template.zip provided on the website of the course. You should fill it out using
Java, and the required JDK is JDK13 . The command to execute is:

./gradlew run --args=’task id example.regex lorem-ipsum.txt edit-distance’

Where task id / example.regex / lorem-ipsum.txt / edit-distance need to be changed accordingly.
The value of task id can be 1,2,3 or 4 and corresponds to the numbering of the subtasks. You should print
your solution to stdout. Print not found if the answer is K, <number>-<number> if the answer is the positions
of first and last letter of an occurrence, and <number> if the answer is the position of the last letter of an
occurrence. Note that there is a regular expression parser included in the template.

Send the modified folder afl-template in .zip format by email with subject header ”afl project part 1” to
chana.weilkennedy [at] in.tum.de. The deadline for this task is 12.12.2019.

Grading

Points will be awarded for correct solutions to examples. Point awards are subject to correctness of the result
and the time performance (the output has to be correct and produced within a reasonable time).

Your source codes will be checked by the standard tools for plagiarism. This is an individual assignement.

http://jdk.java.net/13/

