Automata and Formal Languages - Exercise Sheet 16

Exercise 16.1

Prove or disprove:
(a) $\mathbf{G F}(\varphi \vee \psi) \equiv \mathbf{G F} \varphi \vee \mathbf{G F} \psi$
(b) $\mathbf{G F}(\varphi \wedge \psi) \equiv \mathbf{G F} \varphi \wedge \mathbf{G F} \psi$
(c) $(\varphi \vee \psi) \mathbf{U} \rho \equiv(\varphi \mathbf{U} \rho) \vee(\psi \mathbf{U} \rho)$
(d) $\rho \mathbf{U}(\varphi \vee \psi) \equiv(\rho \mathbf{U} \varphi) \vee(\rho \mathbf{U} \psi)$

Exercise 16.2

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an automaton such that $Q=P \times[n]$ for some finite set P and $n \geq 1$. Automaton A models a system made of n processes. A state $(p, i) \in Q$ represents the current global state p of the system, and the last process i that was executed.

We define two predicates exec_{j} and enab ${ }_{j}$ over Q indicating whether process j is respectively executed and enabled. More formally, for every $q=(p, i) \in Q$ and $j \in[n]$, let

$$
\begin{aligned}
\operatorname{exec}_{j}(q) & \Longleftrightarrow i=j \\
\operatorname{enab}_{j}(q) & \Longleftrightarrow(p, i) \rightarrow\left(p^{\prime}, j\right) \text { for some } p^{\prime} \in P
\end{aligned}
$$

(a) Give LTL formulas over Q^{ω} for the following statements:
(i) All processes are executed infinitely often.
(ii) If a process is enabled infinitely often, then it is executed infinitely often.
(iii) If a process is eventually permanently enabled, then it is executed infinitely often.
(b) The three above properties are known respectively as unconditional, strong and weak fairness. Show the following implications, and show that the reverse implications do not hold:

$$
\text { unconditional fairness } \Longrightarrow \text { strong fairness } \Longrightarrow \text { weak fairness. }
$$

Exercise 16.3

Let AP $=\{p, q\}$ and let $\Sigma=2^{\text {AP }}$. An LTL formula is a tautology if it is satisfied by all computations. Which of the following LTL formulas are tautologies?
(a) $\mathbf{G} p \rightarrow \mathbf{F} p$
(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$
(c) $\mathbf{F G} p \vee \mathbf{F G} \neg p$
(e) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$
(f) $\neg(p \mathbf{U} q) \leftrightarrow(\neg p \mathbf{U} \neg q)$
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$
(g) $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$

Solution 16.1

(a) True. If $\sigma \models \mathbf{G F} \varphi \vee \mathbf{G F} \psi$, then $\sigma \models \mathbf{G F}(\varphi \vee \psi)$. If $\sigma \models \mathbf{G F}(\varphi \vee \psi)$, then there exist $i_{0}<i_{1}<\cdots$ such that

$$
\begin{equation*}
\sigma^{i_{j}} \models \varphi \vee \psi \text { for every } j \in \mathbb{N} \tag{1}
\end{equation*}
$$

Let $I=\left\{j \in \mathbb{N}: \sigma^{i_{j}} \models \varphi\right\}$ and $J=\left\{j \in \mathbb{N}: \sigma^{i_{j}} \models \psi\right\}$. If I and J are both finite, then (1) does not hold, which is a contradiction. Therefore, at least one of I and J is infinite. This implies that $\sigma \models \mathbf{G F} \varphi \vee \mathbf{G F} \psi$.
(b) False. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \not \models \mathbf{G F}(p \wedge q)$ and $\sigma \models \mathbf{G F} p \wedge \mathbf{G F} q$.
(c) False. Let $\sigma=\{p\}\{q\}\{r\} \emptyset^{\omega}$. We have $\sigma \models(p \vee q) \mathbf{U} r$ and $\sigma \not \vDash(p \mathbf{U} r) \vee(q \mathbf{U} r)$.
(d) True, since:

$$
\begin{aligned}
\sigma \models \rho \mathbf{U}(\varphi \vee \psi) & \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models(\varphi \vee \psi) \wedge \forall 0 \leq i<k \sigma^{i} \models \rho \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\left(\sigma^{k} \models \varphi\right) \vee\left(\sigma^{k} \models \psi\right)\right) \wedge \forall 0 \leq i<k \sigma^{i} \models \rho \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k} \models \varphi \wedge \forall 0 \leq i<k \sigma^{i} \models \rho\right) \vee\left(\sigma^{k} \models \psi \wedge \forall 0 \leq i<k \sigma^{i} \models \rho\right) \\
& \Longleftrightarrow\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \varphi \wedge \forall 0 \leq i<k \sigma^{i} \models \rho\right) \vee\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \psi \wedge \forall 0 \leq i<k \sigma^{i} \models \rho\right) \\
& \Longleftrightarrow \sigma \models(\rho \mathbf{U} \varphi) \vee(\rho \mathbf{U} \psi) .
\end{aligned}
$$

Solution 16.2

(a) (i) $\bigwedge_{j \in[n]} \mathbf{G F} \operatorname{exec}_{j}$
(ii) $\bigwedge_{j \in[n]}\left(\mathbf{G F}\right.$ enab $\left._{j} \rightarrow \mathbf{G F} \operatorname{exec}_{j}\right)$
(iii) $\bigwedge_{j \in[n]}\left(\mathbf{F G}\right.$ enab $_{j} \rightarrow \mathbf{G F}$ exec $\left._{j}\right)$
(b) - Unconditional fairness implies strong fairness. For the sake of contradiction, suppose unconditional fairness holds for some execution σ, but not strong fairness. By assumption, there exists $j \in[n]$ such that $\sigma \not \vDash\left(\mathbf{G F}\right.$ enab $_{j} \rightarrow \mathbf{G F}$ exec $\left._{j}\right)$. Thus,

$$
\begin{aligned}
& \sigma \not \models\left(\mathbf{G F} \operatorname{enab}_{j} \rightarrow \mathbf{G F} \operatorname{exec}_{j}\right) \Longleftrightarrow \\
& \sigma \not \models \neg\left(\mathbf{G F} \operatorname{enab}_{j} \rightarrow \mathbf{G F} \operatorname{exec}_{j}\right) \Longleftrightarrow \\
& \sigma \not \models \neg\left(\neg \mathbf{G F} \operatorname{enab}_{j} \vee \mathbf{G F} \operatorname{exec}_{j}\right) \Longleftrightarrow \\
& \sigma \neq \mathbf{G F} \operatorname{enab}_{j} \wedge \neg \mathbf{G F} \operatorname{exec}_{j} \Longleftrightarrow \\
& \sigma \models \neg \mathbf{G F} \operatorname{exec}_{j}
\end{aligned}
$$

which contradicts unconditional fairness.

- Strong fairness implies weak fairness. For the sake of contradiction, suppose strong fairness holds for some execution σ, but not weak fairness. By assumption, there exists $j \in[n]$ such that $\sigma \not \vDash$ $\left(\mathbf{F G}\right.$ enab $_{j} \rightarrow \mathbf{G F}$ exec $\left._{j}\right)$. Thus,

$$
\begin{aligned}
\sigma & \not \models\left(\mathbf{F G} \operatorname{enab}_{j} \rightarrow \mathbf{G F} \operatorname{exec}_{j}\right)
\end{aligned} \Longleftrightarrow
$$

which contradicts strong fairness.

- Strong fairness does not imply unconditional fairness. Execution $(p, 1)(q, 2)^{\omega}$ of the automaton below satisfies strong fairness, but not unconditional fairness.

- Weak fairness does not imply strong fairness. Execution $((p, 1)(q, 1))^{\omega}$ of the automaton below satisfies weak fairness, but not strong fairness.

Solution 16.3

(a) $\mathbf{G} p \rightarrow \mathbf{F} p$ is a tautology since

$$
\begin{aligned}
\sigma \models \mathbf{G} p & \Longleftrightarrow \forall k \geq 0 \sigma^{k} \models p \\
& \Longleftrightarrow \exists k \geq 0 \sigma^{k} \models p \\
& \Longleftrightarrow \sigma \models \mathbf{F} p .
\end{aligned}
$$

(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$ is a tautology. For the sake of contradiction, suppose this is not the case. There exists σ such that

$$
\begin{align*}
& \sigma \neq \mathbf{G}(p \rightarrow q), \text { and } \tag{2}\\
& \sigma \not \vDash(\mathbf{G} p \rightarrow \mathbf{G} q) . \tag{3}
\end{align*}
$$

By (3), we have

$$
\begin{aligned}
& \sigma \models \mathbf{G} p, \text { and } \\
& \sigma \not \models \mathbf{G} q .
\end{aligned}
$$

Therefore, there exists $k \geq 0$ such that $p \in \sigma(k)$ and $q \notin \sigma(k)$ which contradicts (2).
(c) $\mathbf{F G} p \vee \mathbf{F G} \neg p$ is not a tautology since it is not satisfied by $(\{p\}\{q\})^{\omega}$.
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$ is a tautology since $\varphi \rightarrow \mathbf{F} \varphi$ is a tautology for every formula φ.
(e) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$ is a tautology. We have

$$
\begin{array}{rlrl}
\mathbf{G} p \rightarrow \mathbf{F} q & \equiv \neg \mathbf{G} p \vee \mathbf{F} q & & \text { (by def. of implication) } \\
& \equiv \mathbf{F} \neg p \vee \mathbf{F} q & \\
& \equiv \mathbf{F}(\neg p \vee q) & & \\
& \equiv \mathbf{F}(p \rightarrow q) & \text { (by def. of implication) }
\end{array}
$$

Therefore, we have to show that

$$
\mathbf{F}(p \rightarrow q) \leftrightarrow(p \mathbf{U}(p \rightarrow q)) .
$$

$\leftarrow)$ Let σ be such that $\sigma \models(p \mathbf{U}(p \rightarrow q))$. In particular, there exists $k \geq 0$ such that $\sigma^{k} \models(p \rightarrow q)$. Therefore, $\sigma \models \mathbf{F}(p \rightarrow q)$.
$\rightarrow)$ Let σ be such that $\sigma \models \mathbf{F}(p \rightarrow q)$. Let $k \geq 0$ be the smallest position such that $\sigma^{k} \models(p \rightarrow q)$. For every $0 \leq i<k$, we have $\sigma^{i} \not \vDash(p \rightarrow q)$ which is equivalent to $\sigma^{i} \models p \wedge \neg q$. Therefore, for every $0 \leq i<k$, we have $\sigma^{i} \models p$. This implies that $\sigma \models p \mathbf{U}(p \rightarrow q)$.
(f) $\neg(p \mathbf{U} q) \leftrightarrow(\neg p \mathbf{U} \neg q)$ is not a tautology. Let $\sigma=\{p\}\{q\}^{\omega}$. We have $\sigma \not \vDash \neg(p \mathbf{U} q)$ and $\sigma \models(\neg p \mathbf{U} \neg q)$.
(g) $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$ is a tautology since

$$
\begin{array}{rlrl}
\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p) & \equiv \neg \mathbf{G}(\neg p \vee \mathbf{X} p) \vee(\neg p \vee \mathbf{G} p) & & \text { (by def. of implication) } \\
& \equiv \mathbf{F}(p \wedge \neg \mathbf{X} p) \vee \neg p \vee \mathbf{G} p & \\
& \equiv \neg \mathbf{G} p \rightarrow(\neg p \vee(\mathbf{F}(p \wedge \mathbf{X} \neg p)) & \text { (by def. of implication) } \\
& \equiv \mathbf{F} \neg p \rightarrow(\neg p \vee(\mathbf{F}(p \wedge \mathbf{X} \neg p)) & & \\
& \equiv \mathbf{F} \neg p \rightarrow \mathbf{F} \neg p . &
\end{array}
$$

