
Technische Universität München Winter term 2019/20
I7
Prof. J. Křet́ınský / M. Lazić / S. Sickert-Zehnter / C. Weil-Kennedy 16.1.2020

Automata and Formal Languages — Exercise Sheet 13

Exercise 13.1

(a) Give deterministic Büchi automata for La, Lb, Lc where Lσ = {w ∈ {a, b, c}ω : w contains infinitely many σ’s},
and intersect these automata.

(b) Give Büchi automata for the following ω-languages:

• L1 = {w ∈ {a, b}ω : w contains infinitely many a’s},
• L2 = {w ∈ {a, b}ω : w contains finitely many b’s},
• L3 = {w ∈ {a, b}ω : each occurrence of a in w is followed by a b},

and intersect these automata. Decide if this automaton is the smallest Büchi automaton for that language.

Exercise 13.2

Consider the following Büchi automaton over Σ = {a, b}:

q0 q1

a, b b

b

(a) Sketch dag(ababω) and dag((ab)ω).

(b) Let rw be the ranking of dag(w) defined by

rw(q, i) =


1 if q = q0 and 〈q0, i〉 appears in dag(w),

0 if q = q1 and 〈q1, i〉 appears in dag(w),

⊥ otherwise.

Are rababω and r(ab)ω odd rankings?

(c) Show that rw is an odd ranking if and only if w 6∈ Lω(B).

(d) Construct a Büchi automaton accepting Lω(B) using the construction seen in class. Hint : by (c), it is
sufficient to use {0, 1} as ranks.

Exercise 13.3

Convert the following NBAs into DMAs using Safra’s translation.

1. Consider

q0 q1

a

a

a

2. Consider

q0 q1

q2

a, b b

a

a

Solution 13.1

(a) The following deterministic Büchi automata respectively accept La, Lb and Lc:

p0 p1 q0 q1 r0 r1

b, c

a

a

b, c

a, c

b

b

a, c

a, b

c

c

a, b

Taking the intersection of these automata leads to the following deterministic Büchi automaton:

p1, q0, r0

p0, q1, r0

p0, q0, r1

p0, q0, r0

p1, q0, r0

p0, q1, r0

p0, q0, r1

p1, q0, r0

p0, q1, r0

p0, q0, r1

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

F As seen in #11.1(d), La ∩ Lb ∩ Lb is accepted by a smaller deterministic Büchi automaton:

b, c
b, cb, c

a

b

c

a, ca, b

a

(b) The following Büchi automata respectively accept L1, L2 and L3:

p0 p1 q0 q1 r0 r1

b

a

a

b

a, b

a

a b

a

b

Taking the intersection of these automata leads to the following Büchi automaton:

p0, q0, r0 p1, q0, r1

p1, q1, r1

p0, q0, r0 p1, q0, r1

p1, q1, r1

b

a

a b

b

a

a

b

F Note that the language of this automaton is the empty language.

Solution 13.2

(a) dag(ababω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

b

b

b

dag((ab)ω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

a

(b) • r is not an odd rank for dag(ababω) since

〈q0, 0〉
a−→ 〈q0, 1〉

b−→ 〈q0, 2〉
a−→ 〈q0, 3〉

b−→ 〈q1, 4〉
b−→ 〈q1, 5〉

b−→ · · ·

is an infinite path of dag(ababω) not visiting odd nodes infinitely often.

• r is an odd rank for dag((ab)ω) since it has a single infinite path:

〈q0, 0〉
a−→ 〈q0, 1〉

b−→ 〈q0, 2〉
a−→ 〈q0, 3〉

b−→ 〈q0, 4〉
a−→ 〈q0, 5〉

b−→ · · ·

which only visits odd nodes.

(c) ⇒) Let w ∈ Lω(B). We have w = ubω for some u ∈ {a, b}∗. This implies that

〈q0, 0〉
u−→ 〈q0, |u|〉

b−→ 〈q1, |u|+ 1〉 b−→ 〈q1, |u|+ 2〉 b−→ · · ·

is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, r is not odd for
dag(w).

⇐) Let w 6∈ Lω(B). Suppose there exists an infinite path of dag(w) that does not visit odd nodes infinitely
often. At some point, this path must only visit nodes of the form 〈q1, i〉. Therefore, there exists u ∈ {a, b}∗
such that

〈q0, 0〉
u−→ 〈q1, |u|〉

b−→ 〈q1, |u|+ 1〉 b−→ 〈q1, |u|+ 2〉 b−→ · · ·
This implies that w = ubω ∈ Lω(B) which is contradiction.

(d) Recall that we construct an NBA with an infinite number of states whose runs on an ω-word w are the
rankings of dag(w). The automaton accepts a ranking R iff every infinite path of R visits nodes of odd
rank i.o. By (c), for every w ∈ {a, b}ω, if dag(w) has an odd ranking, then it has one ranging over 0 and
1. Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 (and our NBA is now
finite). We obtain the following Büchi automaton, for which some intuition is given below:

1
⊥
∅

0
⊥
{q0}

0
0

{q0, q1}

1
0
{q1}

0
0
{q1}

0
⊥
∅

a

a

b

a

b

a

b

ba

b

b

a

b

a

a

b

Any ranking r of dag(w) can be decomposed into a sequence lr1, lr2, . . . such that lri(q) = r(< q, i >),

the level i of rank r. Recall that in this automaton, the transitions

[
lr(q0)
lr(q1)

]
a−→
[
lr′(q0)
lr′(q1)

]
represent the

possible next level for ranks r such that lr(q) = r(< q, i >) and lr′(q) = r(< q, i+ 1 >) for q = q0, q1.

The additional set of states in the automaton represents the set of states that “owe” a visit to a state of
odd rank. Formally, the transitions are the triples [lr, O]

a−→ [lr′, O′] such that lr
a−→ lr′ and O′ = {q′ ∈

δ(O, a)|lr′(q′) is even} if O 6= ∅, and O′ = {q′ ∈ Q|lr′(q′) is even} if O = ∅.
Finally the accepting states of the automaton are those with no “owing” states, which represent the
breakpoints i.e. a moment where we are sure that all runs on w have seen an odd rank since the last
breakpoint.

F It would have even been sufficient to only explore the blue states as they correspond to the family of
rankings {rw : w ∈ Σω}.

Solution 13.3

The Safra determinization procedure converts an NBA A to a DMA B recognizing the same language. It relies
on the idea of breakpoints. Consider a run in the automata of the classical subset construction (from NFA to
DFA):

{q0}
u1−→Q1

v1−→R1
u2−→ . . .

ui−→Qi
vi−→Ri

⊇ = ⊇ =

F1
v1−→G1 Fi

vi−→Gi

The Fi are the subset of final states of Qi, and the ui, vi are words. We call the moment Ri = Gi a breakpoint.
If a run over ω-word w visits breakpoints infinitely often then there is a run in the classical subset automata
where w visits final states infinitely often. We want to identify these breakpoints, which will be the final states
of our DMA. To do so we take as states of B trees whose nodes are sets of states.

Let A be the NBA illustrated in 1., and B the DMA we want to build.

From a tree-state S (whose nodes are sets of states), we get the next tree-state by applying the four steps

1. apply letter a to all nodes of the tree-state S

2. for each node that contains final states, create a child node containing those final states

3. horizontal-merge: if the states of a node n are contained in the node of an older sibling node, delete this
node n

4. vertical-merge: if the union of all the children of a node n are equal to that node n, then delete the
children and add n to the list of marked nodes. The marked nodes help identify the breakpoints of our
automata.

The initial state of B is the 1 node tree

q0

We apply the steps (1 and 2) to our initial tree-state and obtain our second state of B

q0, q1

q1

We apply the steps to this new tree, first (1 and 2)

q0, q1

q0 q1

then step (4) which marks {q0, q1} and obtain the third state of B

q0, q1

Applying the steps to this third state results in the second state again. We now draw the resulting DMA
automaton B:

I II III
a

a

a

The final sets F1, F2, ..., Fk are defined such that each marked node defines one such Fi. There is only one
marked node in this case, {q0, q1}, and the final set F1 is the tree-states that contain {q0, q1} so {II, III}.

