Automata and Formal Languages - Exercise Sheet 13

Exercise 13.1

(a) Give deterministic Büchi automata for L_{a}, L_{b}, L_{c} where $L_{\sigma}=\left\{w \in\{a, b, c\}^{\omega}: w\right.$ contains infinitely many σ^{\prime} 's $\}$, and intersect these automata.
(b) Give Büchi automata for the following ω-languages:

- $L_{1}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains infinitely many a 's $\}$,
- $L_{2}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many b 's $\}$,
- $L_{3}=\left\{w \in\{a, b\}^{\omega}\right.$: each occurrence of a in w is followed by a $\left.b\right\}$,
and intersect these automata. Decide if this automaton is the smallest Büchi automaton for that language.

Exercise 13.2

Consider the following Büchi automaton over $\Sigma=\{a, b\}$:

(a) Sketch $\operatorname{dag}\left(a b a b^{\omega}\right)$ and $\operatorname{dag}\left((a b)^{\omega}\right)$.
(b) Let r_{w} be the ranking of $\operatorname{dag}(w)$ defined by

$$
r_{w}(q, i)= \begin{cases}1 & \text { if } q=q_{0} \text { and }\left\langle q_{0}, i\right\rangle \text { appears in } \operatorname{dag}(w), \\ 0 & \text { if } q=q_{1} \text { and }\left\langle q_{1}, i\right\rangle \text { appears in } \operatorname{dag}(w), \\ \perp & \text { otherwise. }\end{cases}
$$

Are $r_{a b a b \omega}$ and $r_{(a b)^{\omega}}$ odd rankings?
(c) Show that r_{w} is an odd ranking if and only if $w \notin L_{\omega}(B)$.
(d) Construct a Büchi automaton accepting $\overline{L_{\omega}(B)}$ using the construction seen in class. Hint: by (c), it is sufficient to use $\{0,1\}$ as ranks.

Exercise 13.3

Convert the following NBAs into DMAs using Safra's translation.

1. Consider

2. Consider

Solution 13.1
(a) The following deterministic Büchi automata respectively accept L_{a}, L_{b} and L_{c} :

\star As seen in $\# 11.1(\mathrm{~d}), L_{a} \cap L_{b} \cap L_{b}$ is accepted by a smaller deterministic Büchi automaton:

(b) The following Büchi automata respectively accept L_{1}, L_{2} and L_{3} :

Taking the intersection of these automata leads to the following Büchi automaton:

Note that the language of this automaton is the empty language.

Solution 13.2

(a) $\operatorname{dag}\left(a b a b^{\omega}\right)$:

$\operatorname{dag}\left((a b)^{\omega}\right):$

(b) • r is not an odd rank for $\operatorname{dag}\left(a b a b^{\omega}\right)$ since

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{1}, 4\right\rangle \xrightarrow{b}\left\langle q_{1}, 5\right\rangle \xrightarrow{b} \cdots
$$ is an infinite path of $\operatorname{dag}\left(a b a b^{\omega}\right)$ not visiting odd nodes infinitely often.

- r is an odd rank for $\operatorname{dag}\left((a b)^{\omega}\right)$ since it has a single infinite path:

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{0}, 4\right\rangle \xrightarrow{a}\left\langle q_{0}, 5\right\rangle \xrightarrow{b} \cdots
$$

which only visits odd nodes.
(c) $\Rightarrow)$ Let $w \in L_{\omega}(B)$. We have $w=u b^{\omega}$ for some $u \in\{a, b\}^{*}$. This implies that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{0},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}(w)$. Since this path does not visit odd nodes infinitely often, r is not odd for $\operatorname{dag}(w)$.
$\Leftarrow)$ Let $w \notin L_{\omega}(B)$. Suppose there exists an infinite path of $\operatorname{dag}(w)$ that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form $\left\langle q_{1}, i\right\rangle$. Therefore, there exists $u \in\{a, b\}^{*}$ such that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{1},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

This implies that $w=u b^{\omega} \in L_{\omega}(B)$ which is contradiction.
(d) Recall that we construct an NBA with an infinite number of states whose runs on an ω-word w are the rankings of $\operatorname{dag}(w)$. The automaton accepts a ranking R iff every infinite path of R visits nodes of odd rank i.o. By (c), for every $w \in\{a, b\}^{\omega}$, if $\operatorname{dag}(w)$ has an odd ranking, then it has one ranging over 0 and 1. Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 (and our NBA is now finite). We obtain the following Büchi automaton, for which some intuition is given below:

Any ranking r of $\operatorname{dag}(w)$ can be decomposed into a sequence $l r_{1}, l r_{2}, \ldots$ such that $l r_{i}(q)=r(<q, i>)$, the level i of rank r. Recall that in this automaton, the transitions $\left[\begin{array}{l}\operatorname{lr}\left(q_{0}\right) \\ \operatorname{lr}\left(q_{1}\right)\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}l r^{\prime}\left(q_{0}\right) \\ \operatorname{lr} r^{\prime}\left(q_{1}\right)\end{array}\right]$ represent the possible next level for ranks r such that $\operatorname{lr}(q)=r(<q, i>)$ and $l r^{\prime}(q)=r(<q, i+1>)$ for $q=q_{0}, q_{1}$.
The additional set of states in the automaton represents the set of states that "owe" a visit to a state of odd rank. Formally, the transitions are the triples $[l r, O] \xrightarrow{a}\left[l r^{\prime}, O^{\prime}\right]$ such that $l r \xrightarrow{a} l r^{\prime}$ and $O^{\prime}=\left\{q^{\prime} \in\right.$ $\delta(O, a) \mid l r^{\prime}\left(q^{\prime}\right)$ is even $\}$ if $O \neq \emptyset$, and $O^{\prime}=\left\{q^{\prime} \in Q \mid l r^{\prime}\left(q^{\prime}\right)\right.$ is even $\}$ if $O=\emptyset$.
Finally the accepting states of the automaton are those with no "owing" states, which represent the breakpoints i.e. a moment where we are sure that all runs on w have seen an odd rank since the last breakpoint.

* It would have even been sufficient to only explore the blue states as they correspond to the family of rankings $\left\{r_{w}: w \in \Sigma^{\omega}\right\}$.

Solution 13.3

The Safra determinization procedure converts an NBA A to a DMA B recognizing the same language. It relies on the idea of breakpoints. Consider a run in the automata of the classical subset construction (from NFA to DFA):

$$
\begin{aligned}
& \left\{q_{0}\right\} \xrightarrow{u_{1}} Q_{1} \xrightarrow{v_{1}} R_{1} \xrightarrow{u_{2}} \ldots \xrightarrow{u_{i}} Q_{i} \xrightarrow{v_{i}} R_{i} \\
& \supseteq \quad \supseteq= \\
& F_{1} \xrightarrow{v_{1}} G_{1} \quad F_{i} \xrightarrow{v_{i}} G_{i}
\end{aligned}
$$

The F_{i} are the subset of final states of Q_{i}, and the u_{i}, v_{i} are words. We call the moment $R_{i}=G_{i}$ a breakpoint . If a run over ω-word w visits breakpoints infinitely often then there is a run in the classical subset automata where w visits final states infinitely often. We want to identify these breakpoints, which will be the final states of our DMA. To do so we take as states of B trees whose nodes are sets of states.

Let A be the NBA illustrated in 1., and B the DMA we want to build.
From a tree-state S (whose nodes are sets of states), we get the next tree-state by applying the four steps

1. apply letter a to all nodes of the tree-state S
2. for each node that contains final states, create a child node containing those final states
3. horizontal-merge: if the states of a node n are contained in the node of an older sibling node, delete this node n
4. vertical-merge: if the union of all the children of a node n are equal to that node n, then delete the children and add n to the list of marked nodes. The marked nodes help identify the breakpoints of our automata.

The initial state of B is the 1 node tree

We apply the steps (1 and 2) to our initial tree-state and obtain our second state of B

We apply the steps to this new tree, first (1 and 2)

then step (4) which marks $\left\{q_{0}, q_{1}\right\}$ and obtain the third state of B

Applying the steps to this third state results in the second state again. We now draw the resulting DMA automaton B :

The final sets $F_{1}, F_{2}, \ldots, F_{k}$ are defined such that each marked node defines one such F_{i}. There is only one marked node in this case, $\left\{q_{0}, q_{1}\right\}$, and the final set F_{1} is the tree-states that contain $\left\{q_{0}, q_{1}\right\}$ so $\{I I, I I I\}$.

