16.1.2020

Automata and Formal Languages — Exercise Sheet 13

Exercise 13.1

- (a) Give deterministic Büchi automata for L_a, L_b, L_c where $L_{\sigma} = \{w \in \{a, b, c\}^{\omega} : w \text{ contains infinitely many } \sigma$'s $\}$, and intersect these automata.
- (b) Give Büchi automata for the following ω -languages:
 - $L_1 = \{ w \in \{a, b\}^{\omega} : w \text{ contains infinitely many } a's \},$
 - $L_2 = \{ w \in \{a, b\}^{\omega} : w \text{ contains finitely many } b$'s $\},$
 - $L_3 = \{ w \in \{a, b\}^{\omega} : \text{each occurrence of } a \text{ in } w \text{ is followed by a } b \},$

and intersect these automata. Decide if this automaton is the smallest Büchi automaton for that language.

Exercise 13.2

Consider the following Büchi automaton over $\Sigma = \{a, b\}$:

- (a) Sketch dag $(abab^{\omega})$ and dag $((ab)^{\omega})$.
- (b) Let r_w be the ranking of dag(w) defined by

$$r_w(q,i) = \begin{cases} 1 & \text{if } q = q_0 \text{ and } \langle q_0,i \rangle \text{ appears in } \operatorname{dag}(w), \\ 0 & \text{if } q = q_1 \text{ and } \langle q_1,i \rangle \text{ appears in } \operatorname{dag}(w), \\ \bot & \text{otherwise.} \end{cases}$$

Are $r_{abab\omega}$ and $r_{(ab)\omega}$ odd rankings?

- (c) Show that r_w is an odd ranking if and only if $w \notin L_{\omega}(B)$.
- (d) Construct a Büchi automaton accepting $\overline{L_{\omega}(B)}$ using the construction seen in class. *Hint*: by (c), it is sufficient to use $\{0, 1\}$ as ranks.

Exercise 13.3

Convert the following NBAs into DMAs using Safra's translation.

1. Consider

2. Consider

Solution 13.1

(a) The following deterministic Büchi automata respectively accept L_a, L_b and L_c :

★ As seen in #11.1(d), $L_a \cap L_b \cap L_b$ is accepted by a smaller deterministic Büchi automaton:

(b) The following Büchi automata respectively accept L_1, L_2 and L_3 :

Taking the intersection of these automata leads to the following Büchi automaton:

 \bigstar Note that the language of this automaton is the empty language.

Solution 13.2

(a) $dag(abab^{\omega})$:

(b) • r is not an odd rank for dag $(abab^{\omega})$ since

 $\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_1, 4 \rangle \xrightarrow{b} \langle q_1, 5 \rangle \xrightarrow{b} \cdots$

is an infinite path of $dag(abab^{\omega})$ not visiting odd nodes infinitely often.

• r is an odd rank for $dag((ab)^{\omega})$ since it has a single infinite path:

$$\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_0, 4 \rangle \xrightarrow{a} \langle q_0, 5 \rangle \xrightarrow{b} \cdots$$

which only visits odd nodes.

(c) \Rightarrow) Let $w \in L_{\omega}(B)$. We have $w = ub^{\omega}$ for some $u \in \{a, b\}^*$. This implies that

$$\langle q_0, 0 \rangle \xrightarrow{u} \langle q_0, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots$$

is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, r is not odd for dag(w).

 \Leftarrow) Let $w \notin L_{\omega}(B)$. Suppose there exists an infinite path of dag(w) that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form $\langle q_1, i \rangle$. Therefore, there exists $u \in \{a, b\}^*$ such that

$$\langle q_0, 0 \rangle \xrightarrow{u} \langle q_1, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots$$

This implies that $w = ub^{\omega} \in L_{\omega}(B)$ which is contradiction.

(d) Recall that we construct an NBA with an infinite number of states whose runs on an ω-word w are the rankings of dag(w). The automaton accepts a ranking R iff every infinite path of R visits nodes of odd rank i.o. By (c), for every w ∈ {a, b}^ω, if dag(w) has an odd ranking, then it has one ranging over 0 and 1. Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 (and our NBA is now finite). We obtain the following Büchi automaton, for which some intuition is given below:

Any ranking r of dag(w) can be decomposed into a sequence lr_1, lr_2, \ldots such that $lr_i(q) = r(\langle q, i \rangle)$, the level i of rank r. Recall that in this automaton, the transitions $\begin{bmatrix} lr(q_0)\\ lr(q_1) \end{bmatrix} \xrightarrow{a} \begin{bmatrix} lr'(q_0)\\ lr'(q_1) \end{bmatrix}$ represent the possible next level for ranks r such that $lr(q) = r(\langle q, i \rangle)$ and $lr'(q) = r(\langle q, i + 1 \rangle)$ for $q = q_0, q_1$.

The additional set of states in the automaton represents the set of states that "owe" a visit to a state of odd rank. Formally, the transitions are the triples $[lr, O] \xrightarrow{a} [lr', O']$ such that $lr \xrightarrow{a} lr'$ and $O' = \{q' \in \delta(O, a) | lr'(q') \text{ is even} \}$ if $O \neq \emptyset$, and $O' = \{q' \in Q | lr'(q') \text{ is even} \}$ if $O = \emptyset$.

Finally the accepting states of the automaton are those with no "owing" states, which represent the *breakpoints* i.e. a moment where we are sure that all runs on w have seen an odd rank since the last breakpoint.

★ It would have even been sufficient to only explore the blue states as they correspond to the family of rankings $\{r_w : w \in \Sigma^\omega\}$.

Solution 13.3

The Safra determinization procedure converts an NBA A to a DMA B recognizing the same language. It relies on the idea of breakpoints. Consider a run in the automata of the classical subset construction (from NFA to DFA):

$$\{q_0\} \xrightarrow{u_1} Q_1 \xrightarrow{v_1} R_1 \xrightarrow{u_2} \dots \xrightarrow{u_i} Q_i \xrightarrow{v_i} R_i$$
$$\supseteq = \qquad \supseteq =$$
$$F_1 \xrightarrow{v_1} G_1 \qquad F_i \xrightarrow{v_i} G_i$$

The F_i are the subset of final states of Q_i , and the u_i, v_i are words. We call the moment $R_i = G_i$ a breakpoint. If a run over ω -word w visits breakpoints infinitely often then there is a run in the classical subset automata where w visits final states infinitely often. We want to identify these breakpoints, which will be the final states of our DMA. To do so we take as states of B trees whose nodes are sets of states.

Let A be the NBA illustrated in 1., and B the DMA we want to build.

From a tree-state S (whose nodes are sets of states), we get the next tree-state by applying the four steps

- 1. apply letter a to all nodes of the tree-state S
- 2. for each node that contains final states, create a child node containing those final states
- 3. horizontal-merge: if the states of a node n are contained in the node of an older sibling node, delete this node n
- 4. vertical-merge: if the union of all the children of a node n are equal to that node n, then delete the children and add n to the list of marked nodes. The marked nodes help identify the breakpoints of our automata.

The initial state of B is the 1 node tree

$$\rightarrow q_0$$

We apply the steps (1 and 2) to our initial tree-state and obtain our second state of B

We apply the steps to this new tree, first (1 and 2)

then step (4) which marks $\{q_0,q_1\}$ and obtain the third state of B

Applying the steps to this third state results in the second state again. We now draw the resulting DMA automaton B:

The final sets $F_1, F_2, ..., F_k$ are defined such that each marked node defines one such F_i . There is only one marked node in this case, $\{q_0, q_1\}$, and the final set F_1 is the tree-states that contain $\{q_0, q_1\}$ so $\{II, III\}$.