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Automata and Formal Languages — Exercise Sheet 12

Exercise 12.1

Prove or disprove:

(a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that
Lω(A) = Lω(B);

(b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such
that Lω(A) = Lω(B);

(c) There exists a Büchi automaton recognizing the finite ω-language {w} such that w ∈ {0, 1, . . . , 9}ω and
wi is the ith decimal of

√
2.

Exercise 12.2

Give deterministic Rabin automata and Muller automata for the following language:

L = {w ∈ {a, b}ω : w contains finitely many a’s}.

Exercise 12.3

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Exercise 12.4

Consider the following automaton A:

q0 q1

q2

a

a

b

b

ab a

(a) Interpret A as a Muller automaton with acceptance condition {{q1}, {q0, q2}}. Use algorithms NMAtoNGA
and NGAtoNBA from the lecture notes to construct a Büchi automaton that recognizes the same language
as A.

(b) Interpret A as a Rabin automaton with acceptance condition {〈{q0, q2}, {q1}〉}. Follow the approach
presented in class to construct a Büchi automaton that recognizes the same language as A.



Solution 12.1

(a) True. The construction for NFAs still work for Büchi automata.

Let B = (Q,Σ, δ, Q0, F ) be a Büchi automaton. We add a state to Q which acts as the single initial state.
More formally, we define B′ = (Q ∪ {qinit},Σ, δ′, {qinit}, F ) where

δ′(q, a) =

{⋃
q0∈Q0

δ(q0, a) if q = qinit,

δ(q, a) otherwise.

We have Lω(B) = Lω(B′), since there exists q0 ∈ Q0 such that

q0
a1−→B q1

a2−→B q2
a3−→B · · ·

if and only if
qinit

a1−→B′ q1
a2−→B′ q2

a3−→B′ · · ·

(b) False. Let L = {aω, bω}. Suppose there exists a Büchi automaton B = (Q, {a, b}, δ, Q0, F ) such that
Lω(B) = L and F = {q}. Since aω ∈ L, there exist q0 ∈ Q0, m ≥ 0 and n > 0 such that

q0
am

−−→ q
an

−−→ q.

Similarly, since bω ∈ L, there exist q′0 ∈ Q0, m′ ≥ 0 and n′ > 0 such that

q′0
bm

′

−−→ q
bn

′

−−→ q.

This implies that

q0
am

−−→ q
bn

′

−−→ q
bn

′

−−→ · · ·
Therefore, am(bn

′
)ω ∈ L, which is a contradiction.

(c) False. Suppose there exists a Büchi automaton B = (Q, {0, 1, . . . , 9}, δ, Q0, F ) such that Lω(B) = {w}.
There exist u ∈ {0, 1, . . . , 9}∗, v ∈ {0, 1, . . . , 9}+, q0 ∈ Q0 and q ∈ F such that

q0
u−→ q

v−→ q.

Therefore, uvω ∈ Lω(B) which implies that w = uvω. Since w represents the decimals of π, we conclude
that π is rational, which is a contradiction.

Solution 12.2

• We give the following Rabin automaton with acceptance condition {({q1}, {q0})}, i.e. where q1 must be
visited infinitely often and q0 must be visited finitely often:

q0 q1

a
b

b

a

• We give the following Muller automaton with acceptance condition {{q1}}, i.e. where precisely {q1} must
be visited infinitely often:

q0 q1

a
b

b

a



Solution 12.3

NBA can be easily transformed into nondterministic Rabin automata (NRA) and vice versa, without any
exponential blow-up.

NBA → NRA. Just observe that a Büchi condition {q1, . . . , qk} is equivalent to the following Rabin condition{ (
{q1}, ∅

)
, . . . ,

(
{qn}, ∅

) }
.

NRA → NBA. Given a Rabin automaton A =
(
Q,Σ, Q0, δ,

{
〈F0, G0〉, . . . , 〈Fm−1, Gm−1〉

} )
, it follows easily

that, as in the case of Muller automata, Lω(A) =
⋃m−1

i=0 Lω(Ai) holds for the NRAs Ai = (Q,Σ, Q0, δ, {〈Fi, Gi〉}).
So it suffices to translate each Ai into an NBA. Since an accepting run ρ of Ai satisfies inf(ρ) ∩ Gi = ∅, from
some point on ρ only visits states of Qi \ Gi. So ρ consists of an initial finite part, say ρ0, that may visit all
states, and an infinite part, say ρ1, that only visits states of Q \ Gi. So we take two copies of Ai. Intuitively,
A′i simulates ρ by executing ρ0 in the first copy, and ρ1 in the second. The condition that ρ1 must visit some
state of Fi infinitely often is enforced by taking Fi as Büchi condition.

Solution 12.4

(a) We must first construct two generalized Büchi automata A and B for {q1} and {q0, q2} respectively.
Automaton A is as follows with acceptance condition {{q1}}:

[q0, 0] [q1, 0]

[q2, 0]

[q1, 1]

a

a

b

b

ab a a

b

b

Automaton B is as follows with acceptance condition {{q0}, {q2}}:

[q0, 0] [q1, 0]

[q2, 0]

[q0, 1]

[q2, 1]

a

a

b

b

ab a

a

b

a

b

a

a

b

ab

The resulting generalized Büchi automaton is the union of A and B. Note that A is essentially already a
standard Büchi automaton, it suffices to make state [q1, 1] accepting. However, it remains to convert B
into a standard Büchi automaton B′:



[q0, 0] [q1, 0]

[q2, 0]

[q0, 1]

[q2, 1]

[q0, 1]′

[q2, 1]′

a

a

b

b

ab a

a

b

a

b

a

a

b

a

b

a

a

b

b

Altogether, we obtain the following Büchi automaton:



[q0, 0] [q1, 0]

[q2, 0]

[q1, 1]

a

a

b

b

ab a a

b

b

a

a

a

a

[q0, 0] [q1, 0]

[q2, 0]

[q0, 1]

[q2, 1]

[q0, 1]′

[q2, 1]′

a

a

b

b

ab a

a

b

a

b

a

a

b

a

b

a

a

b

b

a
a

a

a

a

F Since Büchi automata can have multiple initial states, we can also simply take the disjoint union of
both automata, i.e. have them side by side instead of adding a single new initial.

(b)



[q0, 0] [q1, 0]

[q2, 0]

[q0, 1]

[q2, 1]

a

a

b

b

ab a

a

b

a

b

a

a

b

ab


