Automata and Formal Languages - Exercise Sheet 12

Exercise 12.1

Prove or disprove:
(a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that $L_{\omega}(A)=L_{\omega}(B) ;$
(b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that $L_{\omega}(A)=L_{\omega}(B)$;
(c) There exists a Büchi automaton recognizing the finite ω-language $\{w\}$ such that $w \in\{0,1, \ldots, 9\}^{\omega}$ and w_{i} is the $i^{\text {th }}$ decimal of $\sqrt{2}$.

Exercise 12.2

Give deterministic Rabin automata and Muller automata for the following language:

$$
L=\left\{w \in\{a, b\}^{\omega}: w \text { contains finitely many } a \text { 's }\right\}
$$

Exercise 12.3

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Exercise 12.4

Consider the following automaton A :

(a) Interpret A as a Muller automaton with acceptance condition $\left\{\left\{q_{1}\right\},\left\{q_{0}, q_{2}\right\}\right\}$. Use algorithms NMAtoNGA and $N G A t o N B A$ from the lecture notes to construct a Büchi automaton that recognizes the same language as A.
(b) Interpret A as a Rabin automaton with acceptance condition $\left\{\left\langle\left\{q_{0}, q_{2}\right\},\left\{q_{1}\right\}\right\rangle\right\}$. Follow the approach presented in class to construct a Büchi automaton that recognizes the same language as A.

Solution 12.1

(a) True. The construction for NFAs still work for Büchi automata.

Let $B=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define $B^{\prime}=\left(Q \cup\left\{q_{\text {init }}\right\}, \Sigma, \delta^{\prime},\left\{q_{\text {init }}\right\}, F\right)$ where

$$
\delta^{\prime}(q, a)= \begin{cases}\bigcup_{q_{0} \in Q_{0}} \delta\left(q_{0}, a\right) & \text { if } q=q_{\text {init }} \\ \delta(q, a) & \text { otherwise }\end{cases}
$$

We have $L_{\omega}(B)=L_{\omega}\left(B^{\prime}\right)$, since there exists $q_{0} \in Q_{0}$ such that

$$
q_{0}{ }^{a_{1}} B q_{1}{\xrightarrow{a_{2}}}_{B} q_{2}{\xrightarrow{a_{3}}}_{B} \ldots
$$

if and only if

$$
q_{\text {init }}{\xrightarrow{a_{1}}}_{B^{\prime}} q_{1}{\xrightarrow{a_{2}}}_{B^{\prime}} q_{2}{\xrightarrow{a_{3}}}_{B^{\prime}} \cdots
$$

(b) False. Let $L=\left\{a^{\omega}, b^{\omega}\right\}$. Suppose there exists a Büchi automaton $B=\left(Q,\{a, b\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=L$ and $F=\{q\}$. Since $a^{\omega} \in L$, there exist $q_{0} \in Q_{0}, m \geq 0$ and $n>0$ such that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{a^{n}} q .
$$

Similarly, since $b^{\omega} \in L$, there exist $q_{0}^{\prime} \in Q_{0}, m^{\prime} \geq 0$ and $n^{\prime}>0$ such that

$$
q_{0}^{\prime} \xrightarrow{b^{m^{\prime}}} q \xrightarrow{b^{n^{\prime}}} q .
$$

This implies that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{b^{n^{\prime}}} q \xrightarrow{b^{n^{\prime}}} \cdots
$$

Therefore, $a^{m}\left(b^{n^{\prime}}\right)^{\omega} \in L$, which is a contradiction.
(c) False. Suppose there exists a Büchi automaton $B=\left(Q,\{0,1, \ldots, 9\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=\{w\}$. There exist $u \in\{0,1, \ldots, 9\}^{*}, v \in\{0,1, \ldots, 9\}^{+}, q_{0} \in Q_{0}$ and $q \in F$ such that

$$
q_{0} \xrightarrow{u} q \xrightarrow{v} q .
$$

Therefore, $u v^{\omega} \in L_{\omega}(B)$ which implies that $w=u v^{\omega}$. Since w represents the decimals of π, we conclude that π is rational, which is a contradiction.

Solution 12.2

- We give the following Rabin automaton with acceptance condition $\left\{\left(\left\{q_{1}\right\},\left\{q_{0}\right\}\right)\right\}$, i.e. where q_{1} must be visited infinitely often and q_{0} must be visited finitely often:

- We give the following Muller automaton with acceptance condition $\left\{\left\{q_{1}\right\}\right\}$, i.e. where precisely $\left\{q_{1}\right\}$ must be visited infinitely often:

Solution 12.3

NBA can be easily transformed into nondterministic Rabin automata (NRA) and vice versa, without any exponential blow-up.

NBA \rightarrow NRA. Just observe that a Büchi condition $\left\{q_{1}, \ldots, q_{k}\right\}$ is equivalent to the following Rabin condition $\left\{\left(\left\{q_{1}\right\}, \emptyset\right), \ldots,\left(\left\{q_{n}\right\}, \emptyset\right)\right\}$.

NRA \rightarrow NBA. Given a Rabin automaton $A=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{0}, G_{0}\right\rangle, \ldots,\left\langle F_{m-1}, G_{m-1}\right\rangle\right\}\right)$, it follows easily that, as in the case of Muller automata, $L_{\omega}(A)=\bigcup_{i=0}^{m-1} L_{\omega}\left(A_{i}\right)$ holds for the NRAs $A_{i}=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{i}, G_{i}\right\rangle\right\}\right)$. So it suffices to translate each A_{i} into an NBA. Since an accepting run ρ of A_{i} satisfies $\inf (\rho) \cap G_{i}=\emptyset$, from some point on ρ only visits states of $Q_{i} \backslash G_{i}$. So ρ consists of an initial finite part, say ρ_{0}, that may visit all states, and an infinite part, say ρ_{1}, that only visits states of $Q \backslash G_{i}$. So we take two copies of A_{i}. Intuitively, A_{i}^{\prime} simulates ρ by executing ρ_{0} in the first copy, and ρ_{1} in the second. The condition that ρ_{1} must visit some state of F_{i} infinitely often is enforced by taking F_{i} as Büchi condition.

Solution 12.4

(a) We must first construct two generalized Büchi automata A and B for $\left\{q_{1}\right\}$ and $\left\{q_{0}, q_{2}\right\}$ respectively. Automaton A is as follows with acceptance condition $\left\{\left\{q_{1}\right\}\right\}$:

Automaton B is as follows with acceptance condition $\left\{\left\{q_{0}\right\},\left\{q_{2}\right\}\right\}$:

The resulting generalized Büchi automaton is the union of A and B. Note that A is essentially already a standard Büchi automaton, it suffices to make state $\left[q_{1}, 1\right]$ accepting. However, it remains to convert B into a standard Büchi automaton B^{\prime} :

Altogether, we obtain the following Büchi automaton:

\star Since Büchi automata can have multiple initial states, we can also simply take the disjoint union of both automata, i.e. have them side by side instead of adding a single new initial.
(b)

