Automata and Formal Languages — Exercise Sheet 12

Exercise 12.1

Prove or disprove:

- (a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that $L_{\omega}(A) = L_{\omega}(B)$;
- (b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that $L_{\omega}(A) = L_{\omega}(B)$;
- (c) There exists a Büchi automaton recognizing the finite ω -language $\{w\}$ such that $w \in \{0, 1, \dots, 9\}^{\omega}$ and w_i is the i^{th} decimal of $\sqrt{2}$.

Exercise 12.2

Give *deterministic* Rabin automata and Muller automata for the following language:

 $L = \{ w \in \{a, b\}^{\omega} : w \text{ contains finitely many } a's \}.$

Exercise 12.3

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Exercise 12.4

Consider the following automaton A:

- (a) Interpret A as a Muller automaton with acceptance condition $\{\{q_1\}, \{q_0, q_2\}\}$. Use algorithms NMAtoNGA and NGAtoNBA from the lecture notes to construct a Büchi automaton that recognizes the same language as A.
- (b) Interpret A as a Rabin automaton with acceptance condition $\{\langle \{q_0, q_2\}, \{q_1\}\rangle\}$. Follow the approach presented in class to construct a Büchi automaton that recognizes the same language as A.

Solution 12.1

(a) True. The construction for NFAs still work for Büchi automata.

Let $B = (Q, \Sigma, \delta, Q_0, F)$ be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define $B' = (Q \cup \{q_{init}\}, \Sigma, \delta', \{q_{init}\}, F)$ where

$$\delta'(q, a) = \begin{cases} \bigcup_{q_0 \in Q_0} \delta(q_0, a) & \text{if } q = q_{\text{init}}, \\ \delta(q, a) & \text{otherwise.} \end{cases}$$

We have $L_{\omega}(B) = L_{\omega}(B')$, since there exists $q_0 \in Q_0$ such that

$$q_0 \xrightarrow{a_1}_B q_1 \xrightarrow{a_2}_B q_2 \xrightarrow{a_3}_B \cdots$$

if and only if

$$q_{\text{init}} \xrightarrow{a_1}_{B'} q_1 \xrightarrow{a_2}_{B'} q_2 \xrightarrow{a_3}_{B'} \cdots$$

(b) False. Let $L = \{a^{\omega}, b^{\omega}\}$. Suppose there exists a Büchi automaton $B = (Q, \{a, b\}, \delta, Q_0, F)$ such that $L_{\omega}(B) = L$ and $F = \{q\}$. Since $a^{\omega} \in L$, there exist $q_0 \in Q_0, m \ge 0$ and n > 0 such that

$$q_0 \xrightarrow{a^m} q \xrightarrow{a^n} q$$

Similarly, since $b^{\omega} \in L$, there exist $q'_0 \in Q_0$, $m' \ge 0$ and n' > 0 such that

$$q'_0 \xrightarrow{b^{m'}} q \xrightarrow{b^{n'}} q$$

This implies that

$$q_0 \xrightarrow{a^m} q \xrightarrow{b^{n'}} q \xrightarrow{b^{n'}} \cdots$$

Therefore, $a^m (b^{n'})^{\omega} \in L$, which is a contradiction.

(c) False. Suppose there exists a Büchi automaton $B = (Q, \{0, 1, \dots, 9\}, \delta, Q_0, F)$ such that $L_{\omega}(B) = \{w\}$. There exist $u \in \{0, 1, \dots, 9\}^*$, $v \in \{0, 1, \dots, 9\}^+$, $q_0 \in Q_0$ and $q \in F$ such that

$$q_0 \xrightarrow{u} q \xrightarrow{v} q.$$

Therefore, $uv^{\omega} \in L_{\omega}(B)$ which implies that $w = uv^{\omega}$. Since w represents the decimals of π , we conclude that π is rational, which is a contradiction.

Solution 12.2

• We give the following Rabin automaton with acceptance condition $\{(\{q_1\}, \{q_0\})\}$, i.e. where q_1 must be visited infinitely often and q_0 must be visited finitely often:

• We give the following Muller automaton with acceptance condition $\{\{q_1\}\}$, i.e. where precisely $\{q_1\}$ must be visited infinitely often:

Solution 12.3

NBA can be easily transformed into nondterministic Rabin automata (NRA) and vice versa, without any exponential blow-up.

NBA \rightarrow **NRA.** Just observe that a Büchi condition $\{q_1, \ldots, q_k\}$ is equivalent to the following Rabin condition $\{(\{q_1\}, \emptyset), \ldots, (\{q_n\}, \emptyset)\}$.

NRA \rightarrow **NBA.** Given a Rabin automaton $A = (Q, \Sigma, Q_0, \delta, \{\langle F_0, G_0 \rangle, \dots, \langle F_{m-1}, G_{m-1} \rangle\})$, it follows easily that, as in the case of Muller automata, $L_{\omega}(A) = \bigcup_{i=0}^{m-1} L_{\omega}(A_i)$ holds for the NRAs $A_i = (Q, \Sigma, Q_0, \delta, \{\langle F_i, G_i \rangle\})$. So it suffices to translate each A_i into an NBA. Since an accepting run ρ of A_i satisfies $\inf(\rho) \cap G_i = \emptyset$, from some point on ρ only visits states of $Q_i \setminus G_i$. So ρ consists of an initial *finite* part, say ρ_0 , that may visit all states, and an infinite part, say ρ_1 , that only visits states of $Q \setminus G_i$. So we take two copies of A_i . Intuitively, A'_i simulates ρ by executing ρ_0 in the first copy, and ρ_1 in the second. The condition that ρ_1 must visit some state of F_i infinitely often is enforced by taking F_i as Büchi condition.

Solution 12.4

(a) We must first construct two generalized Büchi automata A and B for $\{q_1\}$ and $\{q_0, q_2\}$ respectively. Automaton A is as follows with acceptance condition $\{\{q_1\}\}$:

Automaton B is as follows with acceptance condition $\{\{q_0\}, \{q_2\}\}$:

The resulting generalized Büchi automaton is the union of A and B. Note that A is essentially already a standard Büchi automaton, it suffices to make state $[q_1, 1]$ accepting. However, it remains to convert B into a standard Büchi automaton B':

Altogether, we obtain the following Büchi automaton:

 \star Since Büchi automata can have multiple initial states, we can also simply take the disjoint union of both automata, i.e. have them side by side instead of adding a single new initial.

(b)

