19.12.2019

Automata and Formal Languages — Exercise Sheet 11

Exercise 11.1

Consider the logic PureMSO(Σ) with syntax

$$\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X. \varphi$$

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ) is given by:

 $\begin{array}{lll} (w,\mathcal{J}) &\models X \subseteq Q_a & \text{iff} & w[p] = a \text{ for every } p \in \mathcal{J}(X) \\ (w,\mathcal{J}) &\models X < Y & \text{iff} & p < p' \text{ for every } p \in \mathcal{J}(X), \, p' \in \mathcal{J}(Y) \\ (w,\mathcal{J}) &\models X \subseteq Y & \text{iff} & p \in \mathcal{J}(Y) \text{ for every } p \in \mathcal{J}(X) \end{array}$

with the rest as for $MSO(\Sigma)$.

Prove that $MSO(\Sigma)$ and $PureMSO(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $MSO(\Sigma)$ there is an equivalent sentence ψ of $PureMSO(\Sigma)$, and vice versa.

Exercise 11.2

Give *deterministic* Büchi automata recognizing the following ω -languages over $\Sigma = \{a, b, c\}$:

- (a) $L_1 = \{ w \in \Sigma^{\omega} : w \text{ contains at least one } c \},\$
- (b) $L_2 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ every } a \text{ is immediately followed by a } b \},$
- (c) $L_3 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ between two successive } a's \text{ there are at least two } b's \}.$

Exercise 11.3

Let $\inf(w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata and ω -regular expressions for the following ω -languages over $\Sigma = \{a, b, c\}$:

- (a) $L_1 = \{ w \in \Sigma^{\omega} : \inf(w) \subseteq \{a, b\} \},\$
- (b) $L_2 = \{ w \in \Sigma^{\omega} : \inf(w) = \{a, b\} \},\$
- (c) $L_3 = \{ w \in \Sigma^{\omega} : \{a, b\} \subseteq \inf(w) \},\$
- (d) $L_4 = \{ w \in \Sigma^{\omega} : \inf(w) = \{ a, b, c \} \}.$
- (e) \bigstar Does there exist a deterministic Büchi automaton accepting L_1 ? If there is then give it, otherwise give a proof of why it is not true.

Solution 11.1

Given a sentence ψ of PureMSO(Σ), let ϕ be the sentence of MSO(Σ) obtained by replacing every subformula of ψ of the form

$$\begin{split} X &\subseteq Y \quad \text{by} \quad \forall x \ (x \in X \to x \in Y) \\ X &\subseteq Q_a \quad \text{by} \quad \forall x \ (x \in X \to Q_a(x)) \\ X &< Y \quad \text{by} \quad \forall x \ \forall y \ (x \in X \land y \in Y) \to x < y \end{split}$$

Clearly, ϕ and ψ are equivalent. For the other direction, let

$$empty(X) := \forall Y X \subseteq Y$$

and

$$\operatorname{sing}(X) := \neg \operatorname{empty}(X) \land \forall Y (Y \subseteq X \land \neg \operatorname{empty}(Y)) \to X = Y.$$

Let ϕ be a sentence of MSO(Σ). Assume without loss of generality that for every first-order variable x the second-order variable X does not appear in ϕ (if necessary, rename second-order variables appropriately). Let ψ be the sentence of PureMSO(Σ) obtained by replacing every subformula of ϕ of the form

$$\begin{array}{lll} \exists x \ \psi' & \mbox{by} & \exists X \left(\operatorname{sing}(X) \land \psi'[x/X] \right) \\ & & \mbox{where} \ \psi'[x/X] \mbox{ is the result of substituting } X \mbox{ for } x \mbox{ in } \psi' \\ Q_a(x) & \mbox{by} & X \subseteq Q_a \\ x < y & \mbox{ by} & X < Y \\ x \in Y & \mbox{ by} & X \subseteq Y \end{array}$$

Clearly, ϕ and ψ are equivalent.

Solution 11.2

(a)

or simply,

Solution 11.3

(a) $(a+b+c)^*(a+b)^{\omega}$, and

(b) $(a+b+c)^*(aa^*bb^*)^{\omega}$, and

(c) $((b+c)^*a(a+c)^*b)^{\omega}$, and

(d) $((b+c)^*a(a+c)^*b(a+b)^*c)^{\omega}$, and

(e) \bigstar It is asked whether there exists a deterministic Büchi automaton accepting L_1 . We show that it is not the case. For the sake of contradiction, suppose there exists a deterministic Büchi automaton $B = (Q, \Sigma, \delta, q_0, F)$ such that $L_{\omega}(B) = L_1$. Since $cb^{\omega} \in L_1$, B must visit F infinitely often when reading cb^{ω} . In particular, this implies the existence of $m_1 > 0$ and $q_1 \in F$ such that $q_0 \xrightarrow{cb^{m_1}} q_1$. Similarly, since $b^{m_1}cb^{\omega} \in L_1$, there exist $m_2 > 0$ and $q_2 \in F$ such that $q_0 \xrightarrow{cb^{m_1}cb^{m_2}} q_2$. Since B is deterministic, we have $q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2$. By repeating this argument |Q| times, we can construct $m_1, m_2, \ldots, m_{|Q|} > 0$ and $q_1, q_2, \ldots, q_{|Q|} \in F$ such that

$$q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2 \cdots \xrightarrow{cb^{m_{|Q|}}} q_{|Q|}.$$

By the pigeonhole principle, there exist $0 \le i < j \le |Q|$ such that $q_i = q_j$. Let

$$u = cb^{m_1}cb^{m_2}\cdots cb^{m_i},$$

$$v = cb^{m_{i+1}}cb^{m_{i+2}}\cdots cb^{m_j}.$$

We have $q_0 \xrightarrow{u} q_i \xrightarrow{v} q_i \xrightarrow{v} q_i \xrightarrow{u} \cdots$ which implies that $uv^{\omega} \in L_{\omega}(B)$. This is a contradiction since $uv^{\omega} \notin L_1$.